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1. Introduction

1.1. On this article. Let p be a prime number. The aim of this article is to give
an algorithm for computing p-adic multiple zeta values defined by Furusho [F]. A
rough sketch of our algorithm is a follows:

• Let W denote the set of words of two letters 0, 1. We introduce in Section
2.3.2 a subset W1 ⊂ W .

• Let B̃ denote the (commutative) polynomial ring over Z in (infinitely many)
variables indexed by W × W . We introduce in Section 3.1.1 a certain

quotient ring B of B̃.
• Let us consider the free B module B[W ] with basis W .
• In section 3.1 we define a map H : W1 × W → B[W ] by an inductive

method. W , W1, B̃, B and H do not depend on the choice of p.
• We introduce in (3.1) an integer Cp,m for each integer m ≥ 0.
• We introduce in Section 3.3.1 a p-adic number Zp(k1, . . . ,kr) ∈ Qp for
indices k1, . . . , kr (we refer Section 2.1 for the definition of an index).

• We introduce in Section 3.3.3 a map Z̃p : W × W → Qp. We extend

this to a homomorphism Z̃ : B̃ → Qp of rings. This homomorphism factors
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through the quotient homomorphism B̃ → B and induces a homomorphism
Z : B → Qp of rings.

• We can inductively compute the p-adic multiple zeta values by using (3.4).
(See section 2.3.3 for the definition of the symbol k(w) which appears in
(??).)

The reader can understand the algorithm only by reading the paragraphs and the
equation referred above.

The author have made some numerical computation of p-adic multiple zeta values
using the algorithm above, which have lead him to a conjecture relating the p-adic
multiple zeta values with the mod. p multiple harmonic sums studied by [?] and
[Zh].

2. Notation

2.1. Notation for modules. For a set S and for a commutative ring R, we denote
by R[S] the free R-module with basis S. For s ∈ S, we denote by the symbol [s]
the element s regard as a member of the basis of R[S].

2.2. Notation for the multiple zeta values.

2.2.1. Notation for indices. Let Z≥0, Z≥1 denote the set of non-negative integers,
the set of positive integer, respectively. Let us introduce the following set I:

I =
⨿

n∈Z≥0

(

n times︷ ︸︸ ︷
Z≥1 × · · · × Z≥1).

An element of I is called an index. Let k = (k1, . . . , kn) be an index. The integer
|k| = k1 + · · ·+ kn is called the weight of k (when n = 0, we understand |k| = 0.

The unique index with |k| = 0 is called the empty index and is denoted by ∅.

2.2.2. Multiple polylogarithms. Let k = (k1, . . . , kn) be an index. Let ∠n denote
the set

(2.1) ∠n = {(m1, . . . ,mn) ∈ Zn | 0 < m1 < · · · < mn}.
The following infinite sum is called the multiple polylogarithm with index k:

Lik(z) = Lik1,...,kd
(z) =

∑
(m1,...,mn)∈∠n

zmn

mk1
1 · · ·mkn

n

.

We regard it as a formal power series in t with coefficients in Q. When k = ∅, we
understand Lik(z) = 1.

2.2.3. Multiple zeta values. We say that an index k = (k1, . . . , kn) is admissible if
k = ∅ or kn ≥ 2.

Suppose that k = (k1, . . . , kn) in an admissible index. Then the infinite sum
Lik(1) converges to a real number which we denote by ζ(k) or by ζ(k1, . . . , kn). By
definition we have

ζ(k) =
∑

0≤m1<...<mn

1

mk1
1 · · ·mkn

n

.

2.3. Notation for words. Let W denote the (non-commutative) free monoid gen-
erated by the two elements 0, 1. We denote by e the unit element of W . We regard
an element of W as a word in letters 0 and 1. Any w ∈ W can be written as
w = w1 · · ·wk, where k ≥ 0 is an integer and w1, . . . , wk are elements of {0, 1}.
The expression w1 · · ·wk of w is called the spelling of w. The integer k is called the
length of w and is denoted by ℓ(w). For v, w ∈ W , we denote by vw or by w ◦ v the
word obtained by joining v and w.
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2.3.1. Some inversions of words. Let w ∈ W and let w = w1 · · ·wk be the spelling
of w. The word wk · · ·w1 is called the order-inversion of w and is denoted by (w)↔.
Let us write w′

i = 1 − wi for i = 1, . . . , k. The word w′
1 · · ·w′

k is called the letter-

inversion of w and is denoted by (w)↕. We have the equality ((w)↔)↕ = ((w)↕)↔ =
w′

k · · ·w′
1. We call the word ((w)↔)↕ the dual of w and is denoted by ι(w).

2.3.2. The submonoid W1 ⊂ W . We letW1 ⊂ W denote the subset of words w ∈ W
which is either equal to e or a word which begins with 1. Then W1 is a submonoid
of W .

2.3.3. The correspondence between indices and words. Let k = (k1, . . . , kn) be an
index. The word

w(k) = 1

k1−1 times︷ ︸︸ ︷
0 · · · · · · 0 1

k2−1 times︷ ︸︸ ︷
0 · · · · · · 0 1 · · · · · · · · · 1

kn−1 times︷ ︸︸ ︷
0 · · · · · · 0

is called the word corresponding to the index k. (Here we understand w(k) = e
when k = ∅.) By definition, w(k) is a word of length |k| which belongs to W1.

For any w ∈ W1, there exists a unique index k satisfying w(k) = w. We denote
this index by k(w).

3. An algorithm for computing p-adic MZV’s

3.1. The map H : W ×W → B[W ].

3.1.1. Some more notation. We denote by B̃ the (commutative) polynomial ring
with integral coeffieints in infinite variables indexed byW×W . For (v, w) ∈ W×W ,

we denote by X̃v,w the element (v, w) regarded as a variable in B̃. We denote by

B the quotient of B̃ by the ideal genrated by the set

{X̃v1,w − X̃v,1w | v, w ∈ W} ∪ {X̃1v,w − X̃v,w1 | v, w ∈ W} ∪ {X̃v,e | v ∈ W}.

For v, w ∈ W , we denote by Xv,w the image of X̃v,w in B.

For a pair (v, w) ∈ W ×W satisfying vw ∈ W1, we denote by X
(2)
v,w the following

element in B:

X(2)
v,w =

 0, if v = w = e,
Xe,w′0, if v = e, w ̸= e (here we set w = 1w′),
Xv′,w0, if v ̸= e (here we set v = 1v′).

3.1.2. The map H : W × W → B[W ]. Let us consider the free B-module B[W ]
with basis W . For v ∈ W , we set

Y (v) = {(v′, v′′) ∈ W ×W | v = v′v′′},

Y0(v) = {(v′, v′′) ∈ W ×W | v = v′0v′′}

Y1(v) = {(v′, v′′) ∈ W ×W | v = v′1v′′}.

Let us define a map H : W1 ×W → B[W ] inductively by the following rules:
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• For any v ∈ W1, w ∈ W with vw ∈ W1,

H(v, w) = [vw] +
∑

(v′,v′′)∈Y (v)

v′′ ̸=e

Xv′′,w[v
′] +

∑
(w′,w′′)∈Y (w)

Xe,w′′ [vw′]

−
∑

(w′,w′′)∈Y0(w)


∑

(v′,v′′)∈Y1(v)

Xv′′,w′0(H(v′0, w′′) +H(v′1, w′′))

+
∑

(v′,v′′)∈Y1(w′)

Xe,v′′0(H(vv′0, w′′) +H(vv′1, w′′))



+
∑

(w′,w′′)∈Y1(w)


∑

(v′,v′′)∈Y0(v)

X0v′′,w′(H(v′0, w′′) +H(v′1, w′′))

+
∑

(v′,v′′)∈Y0(w′)

Xe,0v′′(H(vv′0, w′′) +H(vv′1, w′′))


+

∑
(w′,w′′)∈Y (w)

X
(2)
v,w′H(e, w′′).

Here any term of the form H(0, w′) are understood to be zero.
• For any w ∈ W which begins with 0, we have H(e, w) = 0.

3.1.3. The meaning of H(v, w). Let (v, w) ∈ W1 ×W with vw ∈ W1. We explain
the meaning of H(v, w).

Let p be a prime number. Let us define the formal power series L(v,w) ∈ Q[[t]]
inductively by the following rules:

• L(v,e)(z) = Lik(v)(z)
• Suppose w ̸= e and let us write w = w′x with x ∈ {0, 1}. Then

dL(v,w)(z) =

{
L(v,w′)(z)

d(φ(z))
φ(z) , x = 0,

L(v,w′)(z)
d(φ(z))
1−φ(z) , x = 1

(here φ(z) = 1− (1− z)p) and L(v,w)(0) = 0.

Later we will introduce a ring homomorphism Z : B → Qp. Let us write H(v, w) =∑
w′ bw′ [w′]. Then

∑
w′ Z(bw′)ζp(k(w′)) can be interpreted as the value at z = 1 of

an suitable analytic continuation of the power series L(v,w)(z).

3.1.4. Variant. The map H ′ : W ×W → B[s][W ]. Let us consider the polynomial
ring B[s] over B in one variable s. Let us define a map H ′ : W1 ×W → B[s][W ]
inductively by the following rules:

• For any v ∈ W1, w ∈ W with vw ∈ W1,

H ′(v, w) = [vw] +
∑

(v′,v′′)∈Y (v)

v′′ ̸=e

Xv′′,w[v
′] +

∑
(w′,w′′)∈Y (w)

Xe,w′′ [vw′]

−
∑

(w′,w′′)∈Y0(w)


∑

(v′,v′′)∈Y1(v)

Xv′′,w′0(H
′(v′0, w′′) +H ′(v′1, w′′))

+
∑

(v′,v′′)∈Y1(w′)

Xe,v′′0(H
′(vv′0, w′′) +H ′(vv′1, w′′))



+
∑

(w′,w′′)∈Y1(w)


∑

(v′,v′′)∈Y0(v)

X0v′′,w′(H ′(v′0, w′′) +H ′(v′1, w′′))

+
∑

(v′,v′′)∈Y0(w′)

Xe,0v′′(H ′(vv′0, w′′) +H ′(vv′1, w′′))


+

∑
(w′,w′′)∈Y (w)

w′′∈W1

X
(2)
v,w′s

ℓ(w′′)[w′′].
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Here all the terms of the form H ′(0, w′) in the right hand side are as-
sumed to be zero, and any term of the form H ′(1, w′) is understood to be

sℓ(w
′)+1[1w′].

• For any w ∈ W which begins with 0, we have H ′(e, w) = 0.

3.2. The constants Cp,m. In this paragraph we fix a prime number p.
For an integer m ≥ 0, we denote by Cp,m the following integer

(3.1) Cp,m =
∑

0≤i≤⌊m
p ⌋

(−1)pi
(
m

pi

)
.

If we let µp ⊂ Qp denote the set of p-th roots of unity, then we have

Cp,m =
1

p

∑
ζ∈µp

(1− ζ)m.

This shows that the p-adic order of Cp,m is at least max(
⌈

m
p−1

⌉
−1, 0). We can check

that this bound of ordp(Cp,m) is optimal when m is divisible by p − 1. Moreover
we have:

Lemma 3.1. Let us write m = pm′ + r with 0 ≤ r− 1. Let s be the unique integer
satisfying 0 ≤ s ≤ p− 2 and m′ + s ≡ 0 mod (p− 1)Z. We then have

(1) If r = s = 0, then ordp(Cp,m) is equal to max(
⌈

m
p−1

⌉
− 1, 0) = max( pm

′

p−1 −
1, 0).

(2) If r ̸= 0 and s = 0, then ordp(Cp,m) is equal to max(
⌈

m
p−1

⌉
− 1, 0) = pm′

p−1 .

(3) Suppose that s ̸= 0. Then

r∑
j=1

(−1)j
(
r

j

)
js

is not divisible by p if and only if ordp(Cp,m) is equal to max(
⌈

m
p−1

⌉
−1, 0) =⌈

pm′

p−1

⌉
.

□

When m is divisible by p and not divisible by p− 1, then m does not satisfy any
of the three conditions in the lemma above. In this case we can see that ordp(Cp,m)

is strictly smaller that max(
⌈

m
p−1

⌉
− 1, 0). For example if m is odd and is divisible

by p, then it can be checked easily that Cp,m = 0.

3.3. An algorithm.

3.3.1. The sum Zp(k1, . . . , kr). Let k1, . . . , kr be finitely many non-empty indices.
Let us write ki = (ki,1, . . . , ki,ni). We set

∠n1,...,nr =
{
((mi,1, . . . ,mi,ni))1≤i≤r ∈ ∠n1 × · · · × ∠nr | m1,n1 ≥ m2,1, . . . ,mr−1,nr−1 ≥ mr,1

}
We define Zp(k1, . . . ,kr) ∈ Qp to be the sum
(3.2)

Zp(k1, . . . ,kr) =
∑

((mi,1,...,mi,ni
))1≤i≤r∈∠n1,...,nr

Cp,m1,n1−m2,1
· · ·Cp,mr−1,nr−1

−mr,1
Cp,mr,nr∏

1≤i≤r

∏
1≤j≤ni

m
ki,j

i,j

.
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3.3.2. Words in three letters. Let W denote the set of words in the three letters 0,
1, and 2. We regard W as a subset of W. We denote by W2 ⊂ W the subset of
elements of W which is either equal to e or a word which ends with the letter 2.
Any element w of W2 is uniquely written as

w = w(1)2w(2)2 · · · 2w(r−1)2w(r)2

with w(1), . . . , w(r) ∈ W . We denote by K(w) the sequence

K(w) = (k(1w(1)), k(1w(2)), . . . , k(1w(r)))

of indices. This gives a one-to-one correspondence between the elements in W2 and
a finite sequence of indices.

Let T2 : W → W denote the map defined as follows: for w ∈ W , T2(w) is the
word obtained by replacing the letters 0 in (w)↔ with 2. For example we have
T2(01001) = 12212.

We have the following (non-trivial) formula, whose proof will be given in Section
A.3 of the appendix.

Proposition 3.2. Let w ∈ W2. Suppose w ̸= e and w does not contain the letter
0. Then we have Zp(K(w)) = 0. □
3.3.3. The sum Zp(v, w). Let v, w ∈ W . In the computation of p-adic MZV’s, the
sum

(−1)ℓ(w)+1
∑
w′

Zp(K(w′2))

(here ℓ(w) denotes the length of the word w, and w′ in the sum runs over the
shuffles of the words v and T2(w)) plays an important role. We denote this sum by
Zp(v, w).

It seems important to compute the p-adic orders of Zp(v, w) for various v, w ∈ W .
The following formula is non-trivial, and is proved by using a strengthened version
of Proposition 3.2 and the theory of Coleman integrals. Details of the proof will be
given in Section A.5 of the appendix.

Proposition 3.3. Let v, w ∈ W . Then we have

Zp(1v, w) = Zp(v, w1).

□
For (v, w) ∈ W ×W , we set

Z̃p(v, w) =
∑

(w′,w′′)∈Y0(w)

Zp(vw
′, w′′).

Proposition 3.4. Let v, w ∈ W . We then have

(1) Z̃p(v1, w) = Z̃p(v, 1w),

(2) Z̃p(1v, w) = Z̃p(v, w1),

(3) Z̃p(v, e) = 0.

□
Proof. The claims (1), (3) are obvious. The claim (2) follows from Proposition
3.3. □
3.3.4. The algorithm. Let Z̃ : B̃ → Qp be the ring homomorphism defined as

follows: for (v, w) ∈ W × W , the homomorphism Z̃ sends X̃v,w to Z̃p(v, w). It

follows from Proposition 3.4 that the homomorphism Z̃ : B̃ → Qp factors through

the projection B̃ → B. We denote by Z the induced homomorphism B → Qp.

Theorem 3.5. Let w ∈ W1 and let us write H(e, w) =
∑

v∈W bv[v]. We then have
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(1) If ℓ(v) ≥ ℓ(w) and v ̸= w, then we have bv = 0.
(2) We have bw = 1.
(3) If v ̸∈ W1, then we have Z(bv) = 0.
(4) We have

(3.3) p−ℓ(w)ζp(k(w)) =
∑
v∈W1

Zp(bv)ζp(k(v)).

By using this theorem, we can inductively compute ζp(k).

3.3.5. A variant. We extend the homomorphism Z : B → Qp to the homomorphism
Z : B[s] → Qp by setting Z(s) = 1/p.

Theorem 3.6. Let w ∈ W1 and let us write H ′(e, w) =
∑

v∈W b′v[v]. We then
have:

(1) If ℓ(v) ≥ ℓ(w) and v ̸= w, then we have b′v = 0.
(2) We have b′w = 1.
(3) If v ̸∈ W1, then we have Z(b′v) = 0.
(4) We have

(3.4) p−ℓ(w)ζp(k(w)) =
∑
v∈W1

Zp(b
′
v)ζp(k(v)).

We can inductively compute ζp(k) also by using this theorem. It seems that the
latter algorithm is more effective.
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Appendix A. Proofs of Proposition 3.2 and 3.3

In this appendix we give proofs of Proposition 3.2 and 3.3.

A.1. Notation.

A.1.1. In this appendix we fix a prime number p. We denote by Qp the field of
p-adic numbers. For x ∈ Qp, we denote by |x|p the p-adic absolute value of x

satisfying |p|p = 1/p. Let us fix an algebraic closure Qp of Qp. The absolute value

| |p on Qp can be uniquely extended to an absolute value on Qp, which we denote
by the same symbol | |p.

A.1.2. Formal power series. We denote by Qp[[z]] the ring of formal power series
with coefficients in Qp in the formal variable z. Let R ⊂ Qp[[z]] denote the subring
of formal power series f(z) which are p-adically convergent on |z| < 1. By definition,
a formal power series f(z) =

∑
n≥0 anz

n ∈ Qp[[z]] belongs to R if and only if

limn→∞ |an|prn = 0 for any real number r with 0 < r < 1. Let f(z) ∈ R and

ζ ∈ µp. Let us write f(z) =
∑

n≥0 anz
n. For an element α ∈ Qp with |α|p < 1,

the series
∑

n≥0 anα
n is p-adically convergent to an element in Qp. We denote this

element by f(α).
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A.1.3. Notation for words. We use the following notation for a word with letters in
{0, 1, 2}, most of which we have already introduced in Section 2.3 for a word with
letters in {0, 1}. We denote by e the empty word. For a word w, we denote by ℓ(w)
the length of w. For a word w = w1 · · ·wk, we denote by w↔ = wk · · ·w1 the word
obtained by reversing the order of w. For two words v, w, we let Sh(v, w) denote
the multiset of shuffles of v and w.

A.2. The function Lw(z). Let w = w1 · · ·wk, with w1, . . . wk ∈ {0, 1, 2}, be a
word of letters 0, 1, 2. For i = 0, 1, 2 let us write

Si(w) = {j ∈ {1, . . . , k} | wj = i}.

We denote by Mw the set of (k + 1)-tuples (m1, . . . ,mk+1) of positive integers
satisfying the following three conditions:

• For any i ∈ S0(w), we have mi = mi+1,
• For any i ∈ S1(w), we have mi < mi+1,
• For any i ∈ S2(w), we have mi ≥ mi+1.

Let us introduce the following formal power series:

Lw(z) =
∑

(m1,...,mk+1)∈Mw

∏
j∈S2(w) Cp,mj−mj+1

m1 · · ·mk+1
· zmk+1 .

We regard this as an element in Qp[[z]]. One can check easily that Lw(z) belongs
to R.

Let w be a word of letters 0, 1, 2 which ends with 2. Let us write w = w′2. By
definition we have

Z(K(w)) =
1

p

∑
ζ∈µp

Lw′(1− ζ).

Let (v, w) be a pair of words of letters 0, 1. We denote by T2(w) the word of letters
1, 2 obtained by replacing the letter 0 in w↔ with the letter 2. Recall that we have
defined in Section 3.3.3 the p-adic number Zp(v, w) to be

Zp(v, w) = (−1)ℓ(w)+1
∑

w′∈Sh(v,T2(w))

Z(K(w′2)).

A.3. Proof of Proposition 3.2.

Proposition A.1. For any word w of letters 1, 2 and for any ζ ∈ µp, we have
Lw(1− ζ) = 0.

A.3.1. A strategy of a proof of Proposition A.1. We set

q(z) = log(1− z) = −
∑
n≥1

zn

n
.

Observe that q(1 − ζ) = 0 for ζ ∈ µp, and that |q(α)|p ≤ |α|p < 1 for any α ∈ Qp

with |α|p ≤ 1/p1/(p−1). Hence it suffices to show the following lemma:

Lemma A.2. There exists a formal power series fw ∈ R satisfying fw(0) = 0 and
Lw(z) = fw(q(z)).

We prove Lemma A.2 by induction on the length of the word w.
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A.3.2. Two operators J1 and J2. For f(z) =
∑

n≥0 anz
n ∈ Q[[t]], we denote

the formal power series
∑

n≥1 an−1z
n/n by

∫ z

0
f(t)dt. One can check easily that∫ z

0
f(t)dt ∈ R if f(z) ∈ R.
Let us introduce the following three Qp-linear endomorphisms J0, J1, J2 : R → R

of R: for f(z) ∈ R, we set

J0(f) =

∫ z

0

f(t)− f(0)

t
dt,

J1(f) =

∫ z

0

f(t)

1− t
dt,

and

J2(f) =
1

p

∫ z

0

∑
ζ∈µp

f(t)− f(1− ζ)

t− (1− ζ)
dt.

Let w = w1 · · ·wk be a word of letters 1, 2. We then have

Lw(z) = Jwk
◦ · · · ◦ Jw1 ◦ J1(1).

Proof of Lemma A.2. If w = e is an empty word, then Le = −q(z) and the claim is
obvious. Let us assume that w ̸= e. Let j denote the last letter in w and let us write
w = w′j. By induction hypothesis, there exists a formal power series fw′(z) ∈ R
satisfying Lw′(z) = fw′(q(z)). Let us write fw′(z) =

∑
n≥1 anz

n.
First suppose that j = 1. We then have

Lw(z) = J1(fw′(q(z))) =
∑
n≥1

an

∫ z

0

q(t)ndt

1− t
.

Hence we have Lw(z) = fw(q(z)) where

fw(z) = −
∑
n≥2

an−1z
n

n
.

Next suppose that j = 2. By induction hypothesis we have

Lw(z) = J2(fw′(q(z))) =
1

p

∫ z

0

∑
ζ∈µp

1

t− (1− ζ)
fw′(q(t))dt.

For ζ ∈ µp, we have

1− t

(1− ζ)− t
=

eq(t)

eq(t) − ζ

Since
p

1− yp
=

∑
ζ∈µp

1

1− ζy
,

we have ∑
ζ∈µp

t− 1

t− (1− ζ)
=

∑
ζp=1

eq(t)

eq(t) − ζ

=
p

1− e−pq(t)
=

1

q(t)
· −pq(t)

e−pq(t) − 1

=
∑
k≥0

(−p)kBk

k!
q(t)k−1.
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Here Bk denotes the k-th Bernoulli number. Observe that the formal power series∑
k≥0

(−p)kBk

k! zk belongs to R. Hence we have

Lw(z) = J2(fw′(q(z))) =
1

p

∫ z

0

1

t− 1

∑
k≥0,n≥1

(−p)kBkan
k!

q(t)k+n−1dt = fw(q(z)),

where

fw(z) =
1

p

∑
k≥0,n≥1

(−p)kBkan
(k + n)k!

zk+n.

This proves the claim. □
This completes the proof of Proposition A.1.

Proof of Proposition 3.2. Let w be a word of letters 1, 2 which ends with 2. We
prove that Z(K(w)) = 0. Let us write w = w′2. By definition Z(K(w)) is equal to
the sum

1

p

∑
ζ∈µp

Lw′(1− ζ).

Hence the claim follows from Proposition A.1. □
A.4. A description of Zp(v, w).

A.4.1. Some iterated integrals. We set S = {1, 2} ⨿ {1− ζ | ζ ∈ µp}. When p = 2,
we distinguish 2 ∈ {1, 2} with 1− (−1). For α ∈ S, we set

ωα =


dz
1−z if α = 1,
dz

z−α if α = 1− ζ for some ζ ∈ µp,
1
p

∑
ζ∈µp

ω1−ζ , if α = 2.

Let logp : Q×
p → Q denote the branch of p-adic logarithm characterized by logp(p) =

0. For a word α = α1 · · ·αk of letters in S and for β ∈ S we let ĨI(α, β) denote the
regularized iterated integral

ĨI(α, β) =

∫ β

0

ωαk
◦ · · · ◦ ωα1

with respect to the branch logp of p-adic logarithm. This regularized iterated

integral is an element of Qp[T ]. We denote by II(α, β) the constant term of ĨI(α, β).

A.4.2. Auxiliary lemmas. For a word w of letters 0, 1, 2 which ends with 2 and for
an integer r ≥ 1, let us introduce the following set of r-tuples of words of letters 0,
1, 2:

Dr(w) = {(w(1), . . . , w(r)) | w = w(1)2w(2) · · · 2w(r)2}.
The following lemma can be checked easily:

Lemma A.3. Let w be a word of letters 0, 1, 2. Then ζ ∈ µp, the value Lw(1− ζ)
is equal to the sum∑

r≥1

(−1)r−1

pr−1

∑
(w(1),...,w(r))∈Dr(w2)

ζ1,...,ζr−1∈µp

ĨI(1w(1), 1− ζ1)

r∏
j=2

ĨI((1− ζj−1)w
(j), 1− ζj).

Here in the summand we set ζr = ζ. □
Lemma A.4. Let w be a word of letters 1, 2. Then for any ζ ∈ µp we have

ĨI(1w, 1− ζ) = 0.

Proof. This follows from Proposition A.1 and Lemma A.3 by induction of the length
of w. □
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Lemma A.5. Let w be a word of letters 1, 2.

(1) Suppose that w =

k times︷ ︸︸ ︷
2 · · · 2 for some k ≥ 0. Then for any ζ ∈ µp, we have

ĨI(w, 1− ζ) = T k/k!.

(2) Suppose that w contains the letter 1. Then for any ζ ∈ µp we have ĨI(w, 1−
ζ) = 0.

Proof. The claim (1) can be checked directly. We prove the claim (2). Let us write

w =

k times︷ ︸︸ ︷
2 · · · 2 v where v begins with 1. We prove the claim by induction on k. If

k = 0, then the claim follows from Lemma A.4. Suppose that k ≥ 1. Let us write

w = 2w′. By induction hypothesis we have ĨI(w′, 1−ζ) = 0. By applying the shuffle

product formula to ĨI(w′, 1− ζ)ĨI(2, 1− ζ) = 0 and by using induction hypothesis,

we have ĨI(w, 1− ζ) = 0. □

A.5. Proof of Proposition 3.3.

Proposition A.6. Let v and w be words of letters 0, 1. We set w′′ = T2(w)2.
Then Zp(v, w) is equal to the sum

−
∑
r≥1

1

pr−1

∑
(w(1),...,w(r))∈Dr(w′′)

v=v(1)···v(r)

∑
ζ1,...,ζr∈µp

 II((w(1))↔1v(1), 1− ζ1)

×
r∏

j=2

II((w(j))↔(1− ζj−1)v
(j), 1− ζj)

 .

Proof. By Lemma A.3, Zp(v, w) is equal to (−1)ℓ(w)+1 times the sum
(A.1)∑
r≥1

(−1)r−1

pr−1

∑
(w(1),...,w(r))∈Dr(w′′)

v=v(1)···v(r)

∑
(w′(1),...,w′(r)),

w′(i)∈Sh(v(i),w(i))

∑
ζ1,...,ζr∈µp

 II(1w′(1), 1− ζ1)

×
r∏

j=2

II((1− ζj−1)w
′(j), 1− ζj)

 .

Let us write w(i) = w
(i)
1 · · ·w(i)

ki
. By the shuffle product formula we have∑

w′(1)∈Sh(v(1),w(1))

II(1w′(1), 1− ζ1)

=

k1∑
i=0

(−1)iII(w
(1)
i · · ·w(1)

1 1v(1), 1− ζ1)II(w
(1)
i+1 · · ·w

(1)
k1

, 1− ζ1),

and ∑
w′(j)∈Sh(v(j),w(j))

II((1− ζj−1)w
′(j), 1− ζj)

=

k1∑
i=0

(−1)iII(w
(j)
i · · ·w(j)

1 (1− ζj−1)v
(1), 1− ζj)II(w

(j)
i+1 · · ·w

(j)
kj

, 1− ζj)

for j = 2, . . . , r.
Hence by Lemma A.5, we have

(A.2)
∑

w′(1)∈Sh(v(1),w(1))

II(1w′(1), 1− ζ1) = (−1)k1II((w(1))↔1v(1), 1− ζ1),

and
(A.3) ∑
w′(j)∈Sh(v(j),w(j))

II((1− ζj−1)w
′(j), 1− ζj) = (−1)kj II((w(j))↔(1− ζj−1)v

(j), 1− ζ),
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for j = 2, . . . , r. By applying (A.2) and (A.3) to (A.1), we have the desired equality.
□

Proof of Proposition 3.3. The claim follows from Proposition A.6 and Proposition
A.1. □
A.6. A consequence. For a word w in letters 0, 1, 2, for a word α = α1 · · ·αk in
letters S, and for β ∈ S we set

ĨI(w,α, β) =

∫ β

0

ωαk
◦ · · · ◦ ωα2 ◦ Lw(z)ωα1

and denote by II(w,α, β) the constant term of ĨI(w,α, β).

Proposition A.7. Let v and w be words of letters 0, 1. We set w′′ = T2(w)2.
Then Zp(v, w) is equal to the sum

−
∑
r≥1

1

pr−1

∑
(w(1),...,w(r))∈Dr(w′′)

v=v(1)···v(r)

∑
ζ1,...,ζr∈µp

 II((w(1))↔, 1v(1), 1− ζ1)

×
r∏

j=2

II((w(j))↔, (1− ζj−1)v
(j), 1− ζj)

 .

Remark A.8. The sum in Corollary A.7 is easier to calculate than that in Propo-
sition A.6, since II(w′, 1v(1), 1 − ζ1) and II(w′, (1 − ζj−1)v

(j), 1 − ζj) can be easily
written as a p-adically convergent series if w is a non-empty word of letters 1 and
2.

Proof. We can show, by using Proposition A.1, that

II((w(1))↔1v(1), 1− ζ1) = II((w(1))↔, 1v(1), 1− ζ1)

and

II((w(j))↔(1− ζj−1)v
(j), 1− ζj) = II((w(j))↔, (1− ζj−1)v

(j), 1− ζj)

for j = 2, . . . , r. Hence the claim follows from Proposition A.6. □
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