AN ALGORITHM FOR COMPUTING p-ADIC MULTIPLE ZETA VALUES

SEIDAI YASUDA

Contents

1. Introduction 1
1.1. On this article 1
2. Notation 2
2.1. Notation for modules 2
2.2. Notation for the multiple zeta values 2
2.3. Notation for words 2
3. An algorithm for computing p-adic MZV's 3
3.1. The map $H: W \times W \rightarrow B[W]$ 3
3.2. The constants $C_{p, m}$ 5
3.3. An algorithm 5
References 7
Appendix A. Proofs of Proposition 3.2and 3.3 7
A.1. Notation 7
A.2. The function $\mathcal{L}_{w}(z)$ 8
A.3. Proof of Proposition 3.2 8
A.4. A description of $Z_{p}(v, w)$ 10
A.5. Proof of Proposition 3.3 11
A.6. A consequence 12

1. Introduction

1.1. On this article. Let p be a prime number. The aim of this article is to give an algorithm for computing p-adic multiple zeta values defined by Furusho [F]. A rough sketch of our algorithm is a follows:

- Let W denote the set of words of two letters 0,1 . We introduce in Section 2.3.2 a subset $W_{1} \subset W$.
- Let \widetilde{B} denote the (commutative) polynomial ring over \mathbb{Z} in (infinitely many) variables indexed by $W \times W$. We introduce in Section 3.1.1 a certain quotient ring B of \widetilde{B}.
- Let us consider the free B module $B[W]$ with basis W.
- In section 3.1 we define a map $H: W_{1} \times W \rightarrow B[W]$ by an inductive method. $W, W_{1}, \widetilde{B}, B$ and H do not depend on the choice of p.
- We introduce in (3.1) an integer $C_{p, m}$ for each integer $m \geq 0$.
- We introduce in Section 3.3.1 a p-adic number $Z_{p}\left(\mathbb{k}_{1}, \ldots, \mathbb{k}_{r}\right) \in \mathbb{Q}_{p}$ for indices $\mathbb{k}_{1}, \ldots, \mathbb{k}_{r}$ (we refer Section 2.1 for the definition of an index).
- We introduce in Section 3.3.3 a map $\widetilde{Z}_{p}: W \times W \rightarrow \mathbb{Q}_{p}$. We extend this to a homomorphism $\widetilde{Z}: \widetilde{B} \rightarrow \mathbb{Q}_{p}$ of rings. This homomorphism factors

[^0]through the quotient homomorphism $\widetilde{B} \rightarrow B$ and induces a homomorphism $Z: B \rightarrow \mathbb{Q}_{p}$ of rings.

- We can inductively compute the p-adic multiple zeta values by using (3.4). (See section 2.3.3 for the definition of the symbol $\mathbb{k}(w)$ which appears in (??).)
The reader can understand the algorithm only by reading the paragraphs and the equation referred above.

The author have made some numerical computation of p-adic multiple zeta values using the algorithm above, which have lead him to a conjecture relating the p-adic multiple zeta values with the mod. p multiple harmonic sums studied by [?] and [Zh].

2. Notation

2.1. Notation for modules. For a set S and for a commutative ring R, we denote by $R[S]$ the free R-module with basis S. For $s \in S$, we denote by the symbol $[s]$ the element s regard as a member of the basis of $R[S]$.

2.2. Notation for the multiple zeta values.

2.2.1. Notation for indices. Let $\mathbb{Z}_{\geq 0}, \mathbb{Z}_{\geq 1}$ denote the set of non-negative integers, the set of positive integer, respectively. Let us introduce the following set I :

$$
I=\coprod_{n \in \mathbb{Z}_{\geq 0}}(\overbrace{\mathbb{Z}_{\geq 1} \times \cdots \times \mathbb{Z}_{\geq 1}}^{n \text { times }})
$$

An element of I is called an index. Let $\mathbb{k}=\left(k_{1}, \ldots, k_{n}\right)$ be an index. The integer $|\mathbb{k}|=k_{1}+\cdots+k_{n}$ is called the weight of \mathbb{k} (when $n=0$, we understand $|\mathbb{k}|=0$.

The unique index with $|\mathbb{k}|=0$ is called the empty index and is denoted by \emptyset.
2.2.2. Multiple polylogarithms. Let $\mathbb{k}=\left(k_{1}, \ldots, k_{n}\right)$ be an index. Let \angle_{n} denote the set

$$
\begin{equation*}
\angle_{n}=\left\{\left(m_{1}, \ldots, m_{n}\right) \in \mathbb{Z}^{n} \mid 0<m_{1}<\cdots<m_{n}\right\} . \tag{2.1}
\end{equation*}
$$

The following infinite sum is called the multiple polylogarithm with index \mathbb{k} :

$$
\operatorname{Li}_{\mathrm{k}}(z)=\operatorname{Li}_{k_{1}, \ldots, k_{d}}(z)=\sum_{\left(m_{1}, \ldots, m_{n}\right) \in \iota_{n}} \frac{z^{m_{n}}}{m_{1}^{k_{1}} \cdots m_{n}^{k_{n}}}
$$

We regard it as a formal power series in t with coefficients in \mathbb{Q}. When $k=\emptyset$, we understand $\operatorname{Li}_{k_{k}}(z)=1$.
2.2.3. Multiple zeta values. We say that an index $\mathbb{k}=\left(k_{1}, \ldots, k_{n}\right)$ is admissible if $\mathbb{k}=\emptyset$ or $k_{n} \geq 2$.

Suppose that $\mathbb{k}=\left(k_{1}, \ldots, k_{n}\right)$ in an admissible index. Then the infinite sum $\mathrm{Li}_{\mathrm{k}}(1)$ converges to a real number which we denote by $\zeta(\mathbb{k})$ or by $\zeta\left(k_{1}, \ldots, k_{n}\right)$. By definition we have

$$
\zeta(\mathbb{k})=\sum_{0 \leq m_{1}<\ldots<m_{n}} \frac{1}{m_{1}^{k_{1}} \cdots m_{n}^{k_{n}}} .
$$

2.3. Notation for words. Let W denote the (non-commutative) free monoid generated by the two elements 0,1 . We denote by e the unit element of W. We regard an element of W as a word in letters 0 and 1 . Any $w \in W$ can be written as $w=w_{1} \cdots w_{k}$, where $k \geq 0$ is an integer and w_{1}, \ldots, w_{k} are elements of $\{0,1\}$. The expression $w_{1} \cdots w_{k}$ of w is called the spelling of w. The integer k is called the length of w and is denoted by $\ell(w)$. For $v, w \in W$, we denote by $v w$ or by $w \circ v$ the word obtained by joining v and w.
2.3.1. Some inversions of words. Let $w \in W$ and let $w=w_{1} \cdots w_{k}$ be the spelling of w. The word $w_{k} \cdots w_{1}$ is called the order-inversion of w and is denoted by $(w)^{\leftrightarrow}$. Let us write $w_{i}^{\prime}=1-w_{i}$ for $i=1, \ldots, k$. The word $w_{1}^{\prime} \cdots w_{k}^{\prime}$ is called the letterinversion of w and is denoted by $(w)^{\mathfrak{\imath}}$. We have the equality $\left((w)^{\leftrightarrow}\right)^{\mathfrak{\imath}}=\left((w)^{\mathfrak{}}\right)^{\leftrightarrow}=$ $w_{k}^{\prime} \cdots w_{1}^{\prime}$. We call the word $\left((w)^{\leftrightarrow}\right)^{\mathfrak{£}}$ the dual of w and is denoted by $\iota(w)$.
2.3.2. The submonoid $W_{1} \subset W$. We let $W_{1} \subset W$ denote the subset of words $w \in W$ which is either equal to e or a word which begins with 1 . Then W_{1} is a submonoid of W.
2.3.3. The correspondence between indices and words. Let $\mathbb{k}=\left(k_{1}, \ldots, k_{n}\right)$ be an index. The word

$$
w(\mathbb{k})=1 \overbrace{0 \cdots \cdots 0}^{k_{1}-1 \text { times }} 1 \overbrace{0 \cdots \cdots 0}^{k_{2}-1 \text { times }} 1 \cdots \cdots \cdots \cdot 1 \overbrace{0 \cdots \cdots 0}^{k_{n}-1 \text { times }}
$$

is called the word corresponding to the index \mathbb{k}. (Here we understand $w(\mathbb{k})=e$ when $\mathbb{k}=\emptyset$.) By definition, $w(\mathbb{k})$ is a word of length $|\mathbb{k}|$ which belongs to W_{1}.

For any $w \in W_{1}$, there exists a unique index \mathbb{k} satisfying $w(\mathbb{k})=w$. We denote this index by $\mathbb{k}(w)$.

3. An algorithm for computing p-Adic MZV's

3.1. The map $H: W \times W \rightarrow B[W]$.
3.1.1. Some more notation. We denote by \widetilde{B} the (commutative) polynomial ring with integral coeffieints in infinite variables indexed by $W \times W$. For $(v, w) \in W \times W$, we denote by $\widetilde{X}_{v, w}$ the element (v, w) regarded as a variable in \widetilde{B}. We denote by B the quotient of \widetilde{B} by the ideal genrated by the set

$$
\left\{\widetilde{X}_{v 1, w}-\widetilde{X}_{v, 1 w} \mid v, w \in W\right\} \cup\left\{\widetilde{X}_{1 v, w}-\widetilde{X}_{v, w 1} \mid v, w \in W\right\} \cup\left\{\widetilde{X}_{v, e} \mid v \in W\right\}
$$

For $v, w \in W$, we denote by $X_{v, w}$ the image of $\widetilde{X}_{v, w}$ in B.
For a pair $(v, w) \in W \times W$ satisfying $v w \in W_{1}$, we denote by $X_{v, w}^{(2)}$ the following element in B :

$$
X_{v, w}^{(2)}= \begin{cases}0, & \text { if } v=w=e \\ X_{e, w^{\prime} 0}, & \text { if } v=e, w \neq e\left(\text { here we set } w=1 w^{\prime}\right) \\ X_{v^{\prime}, w 0}, & \text { if } v \neq e\left(\text { here we set } v=1 v^{\prime}\right)\end{cases}
$$

3.1.2. The $\operatorname{map} H: W \times W \rightarrow B[W]$. Let us consider the free B-module $B[W]$ with basis W. For $v \in W$, we set

$$
\begin{aligned}
& Y(v)=\left\{\left(v^{\prime}, v^{\prime \prime}\right) \in W \times W \mid v=v^{\prime} v^{\prime \prime}\right\} \\
& Y_{0}(v)=\left\{\left(v^{\prime}, v^{\prime \prime}\right) \in W \times W \mid v=v^{\prime} 0 v^{\prime \prime}\right\} \\
& Y_{1}(v)=\left\{\left(v^{\prime}, v^{\prime \prime}\right) \in W \times W \mid v=v^{\prime} 1 v^{\prime \prime}\right\}
\end{aligned}
$$

Let us define a map $H: W_{1} \times W \rightarrow B[W]$ inductively by the following rules:

- For any $v \in W_{1}, w \in W$ with $v w \in W_{1}$,

$$
\left.\begin{array}{rl}
H(v, w)= & {[v w]+\sum_{\substack{\left(v^{\prime}, v^{\prime \prime}\right) \in Y(v) \\
v^{\prime \prime} \neq e}} X_{v^{\prime \prime}, w}\left[v^{\prime}\right]+\sum_{\left(w^{\prime}, w^{\prime \prime}\right) \in Y(w)} X_{e, w^{\prime \prime}}\left[v w^{\prime}\right]} \\
& -\sum_{\left(w^{\prime}, w^{\prime \prime}\right) \in Y_{0}(w)}\binom{\sum_{\left(v^{\prime}, v^{\prime \prime}\right) \in Y_{1}(v)} X_{v^{\prime \prime}, w^{\prime} 0}\left(H\left(v^{\prime} 0, w^{\prime \prime}\right)+H\left(v^{\prime} 1, w^{\prime \prime}\right)\right)}{+\sum_{\left(v^{\prime}, v^{\prime \prime}\right) \in Y_{1}\left(w^{\prime}\right)} X_{e, v^{\prime \prime} 0}\left(H\left(v v^{\prime} 0, w^{\prime \prime}\right)+H\left(v v^{\prime} 1, w^{\prime \prime}\right)\right)} \\
& +\sum_{\left(w^{\prime}, w^{\prime \prime}\right) \in Y_{1}(w)}\left(\begin{array}{l}
\sum_{\left(v^{\prime}, v^{\prime \prime}\right) \in Y_{0}(v)} X_{0 v^{\prime \prime}, w^{\prime}}\left(H\left(v^{\prime} 0, w^{\prime \prime}\right)+H\left(v^{\prime} 1, w^{\prime \prime}\right)\right) \\
\\
\\
\end{array} \sum_{\left(w^{\prime}, w^{\prime \prime}\right) \in Y(w)} X_{e, 0 v^{\prime \prime}}\left(H\left(v v^{\prime} 0, w^{\prime \prime}\right)+H\left(v v^{\prime} 1, w^{\prime \prime}\right)\right)\right)
\end{array}\right)
$$

Here any term of the form $H\left(0, w^{\prime}\right)$ are understood to be zero.

- For any $w \in W$ which begins with 0 , we have $H(e, w)=0$.
3.1.3. The meaning of $H(v, w)$. Let $(v, w) \in W_{1} \times W$ with $v w \in W_{1}$. We explain the meaning of $H(v, w)$.

Let p be a prime number. Let us define the formal power series $L_{(v, w)} \in \mathbb{Q}[[t]]$ inductively by the following rules:

- $L_{(v, e)}(z)=\operatorname{Li}_{\mathbb{k}_{(}(v)}(z)$
- Suppose $w \neq e$ and let us write $w=w^{\prime} x$ with $x \in\{0,1\}$. Then

$$
d L_{(v, w)}(z)= \begin{cases}L_{\left(v, w^{\prime}\right)}(z) \frac{d(\varphi(z))}{\varphi(z)}, & x=0 \\ L_{\left(v, w^{\prime}\right)}(z) \frac{d(\varphi(z))}{1-\varphi(z)}, & x=1\end{cases}
$$

(here $\left.\varphi(z)=1-(1-z)^{p}\right)$ and $L_{(v, w)}(0)=0$.
Later we will introduce a ring homomorphism $Z: B \rightarrow \mathbb{Q}_{p}$. Let us write $H(v, w)=$ $\sum_{w^{\prime}} b_{w^{\prime}}\left[w^{\prime}\right]$. Then $\sum_{w^{\prime}} Z\left(b_{w^{\prime}}\right) \zeta_{p}\left(\mathbb{k}\left(w^{\prime}\right)\right)$ can be interpreted as the value at $z=1$ of an suitable analytic continuation of the power series $L_{(v, w)}(z)$.
3.1.4. Variant. The map $H^{\prime}: W \times W \rightarrow B[s][W]$. Let us consider the polynomial ring $B[s]$ over B in one variable s. Let us define a map $H^{\prime}: W_{1} \times W \rightarrow B[s][W]$ inductively by the following rules:

- For any $v \in W_{1}, w \in W$ with $v w \in W_{1}$,

$$
\begin{aligned}
H^{\prime}(v, w)= & {[v w]+\sum_{\substack{\left(v^{\prime}, v^{\prime \prime}\right) \in Y(v) \\
v^{\prime \prime} \neq e}} X_{v^{\prime \prime}, w}\left[v^{\prime}\right]+\sum_{\substack{\left(w^{\prime}, w^{\prime \prime}\right) \in Y(w)}} X_{e, w^{\prime \prime}}\left[v w^{\prime}\right] } \\
& -\sum_{\left(w^{\prime}, w^{\prime \prime}\right) \in Y_{0}(w)}\binom{\sum_{\left(v^{\prime}, v^{\prime \prime}\right) \in Y_{1}(v)} X_{v^{\prime \prime}, w^{\prime} 0}\left(H^{\prime}\left(v^{\prime} 0, w^{\prime \prime}\right)+H^{\prime}\left(v^{\prime} 1, w^{\prime \prime}\right)\right)}{+\sum_{\left(v^{\prime}, v^{\prime \prime}\right) \in Y_{1}\left(w^{\prime}\right)} X_{e, v^{\prime \prime} 0}\left(H^{\prime}\left(v v^{\prime} 0, w^{\prime \prime}\right)+H^{\prime}\left(v v^{\prime} 1, w^{\prime \prime}\right)\right)} \\
& +\sum_{\left(w^{\prime}, w^{\prime \prime}\right) \in Y_{1}(w)}\left(\begin{array}{l}
\left(v^{\prime}, v^{\prime \prime}\right) \in Y_{0}(v) \\
+\sum_{0 v^{\prime \prime}, w^{\prime}}\left(H^{\prime}\left(v^{\prime} 0, w^{\prime \prime}\right)+H^{\prime}\left(v^{\prime} 1, w^{\prime \prime}\right)\right)
\end{array} X_{e, 0 v^{\prime \prime}}\left(H^{\prime}\left(v v^{\prime} 0, w^{\prime \prime}\right)+H^{\prime}\left(v v^{\prime} 1, w^{\prime \prime}\right)\right)\right) \\
& +\sum_{\substack{\left.\left(w^{\prime}, w^{\prime \prime}\right) \in Y(w) \\
w^{\prime \prime} \in W_{1}\right)}} X_{v, w^{\prime}}^{(2)} e^{\left.\left(w^{\prime \prime}\right) \in Y_{0}\right)\left[w^{\prime \prime}\right] .}
\end{aligned}
$$

Here all the terms of the form $H^{\prime}\left(0, w^{\prime}\right)$ in the right hand side are assumed to be zero, and any term of the form $H^{\prime}\left(1, w^{\prime}\right)$ is understood to be $s^{\ell\left(w^{\prime}\right)+1}\left[1 w^{\prime}\right]$.

- For any $w \in W$ which begins with 0 , we have $H^{\prime}(e, w)=0$.
3.2. The constants $C_{p, m}$. In this paragraph we fix a prime number p.

For an integer $m \geq 0$, we denote by $C_{p, m}$ the following integer

$$
\begin{equation*}
C_{p, m}=\sum_{0 \leq i \leq\left\lfloor\frac{m}{p}\right\rfloor}(-1)^{p i}\binom{m}{p i} \tag{3.1}
\end{equation*}
$$

If we let $\mu_{p} \subset \overline{\mathbb{Q}}_{p}$ denote the set of p-th roots of unity, then we have

$$
C_{p, m}=\frac{1}{p} \sum_{\zeta \in \mu_{p}}(1-\zeta)^{m}
$$

This shows that the p-adic order of $C_{p, m}$ is at least $\max \left(\left\lceil\frac{m}{p-1}\right\rceil-1,0\right)$. We can check that this bound of $\operatorname{ord}_{p}\left(C_{p, m}\right)$ is optimal when m is divisible by $p-1$. Moreover we have:

Lemma 3.1. Let us write $m=p m^{\prime}+r$ with $0 \leq r-1$. Let s be the unique integer satisfying $0 \leq s \leq p-2$ and $m^{\prime}+s \equiv 0 \bmod (p-1) \mathbb{Z}$. We then have
(1) If $r=s=0$, then $\operatorname{ord}_{p}\left(C_{p, m}\right)$ is equal to $\max \left(\left\lceil\frac{m}{p-1}\right\rceil-1,0\right)=\max \left(\frac{p m^{\prime}}{p-1}-\right.$ $1,0)$.
(2) If $r \neq 0$ and $s=0$, then $\operatorname{ord}_{p}\left(C_{p, m}\right)$ is equal to $\max \left(\left\lceil\frac{m}{p-1}\right\rceil-1,0\right)=\frac{p m^{\prime}}{p-1}$.
(3) Suppose that $s \neq 0$. Then

$$
\sum_{j=1}^{r}(-1)^{j}\binom{r}{j} j^{s}
$$

is not divisible by p if and only if $\operatorname{ord}_{p}\left(C_{p, m}\right)$ is equal to $\max \left(\left\lceil\frac{m}{p-1}\right\rceil-1,0\right)=$ $\left\lceil\frac{p m^{\prime}}{p-1}\right\rceil$.

When m is divisible by p and not divisible by $p-1$, then m does not satisfy any of the three conditions in the lemma above. In this case we can see that $\operatorname{ord}_{p}\left(C_{p, m}\right)$ is strictly smaller that $\max \left(\left\lceil\frac{m}{p-1}\right\rceil-1,0\right)$. For example if m is odd and is divisible by p, then it can be checked easily that $C_{p, m}=0$.

3.3. An algorithm.

3.3.1. The sum $Z_{p}\left(\mathbb{k}_{1}, \ldots, \mathbb{k}_{r}\right)$. Let $\mathbb{k}_{1}, \ldots, \mathbb{k}_{r}$ be finitely many non-empty indices. Let us write $\mathbb{k}_{i}=\left(k_{i, 1}, \ldots, k_{i, n_{i}}\right)$. We set
$\angle_{n_{1}, \ldots, n_{r}}=\left\{\left(\left(m_{i, 1}, \ldots, m_{i, n_{i}}\right)\right)_{1 \leq i \leq r} \in \angle_{n_{1}} \times \cdots \times \angle_{n_{r}} \mid m_{1, n_{1}} \geq m_{2,1}, \ldots, m_{r-1, n_{r-1}} \geq m_{r, 1}\right\}$
We define $Z_{p}\left(\mathbb{k}_{1}, \ldots, \mathbb{k}_{r}\right) \in \mathbb{Q}_{p}$ to be the sum
$Z_{p}\left(\mathbb{k}_{1}, \ldots, \mathbb{k}_{r}\right)=\sum_{\left(\left(m_{i, 1}, \ldots, m_{i, n_{i}}\right)\right)_{1 \leq i \leq r} \in L_{n_{1}, \ldots, n_{r}}} \frac{C_{p, m_{1, n_{1}}-m_{2,1} \cdots C_{p, m_{r-1, n_{r-1}}-m_{r, 1}} C_{p, m_{r, n_{r}}}}^{\prod_{1 \leq i \leq r} \prod_{1 \leq j \leq n_{i}} m_{i, j}^{k_{i, j}}} .}{}$
3.3.2. Words in three letters. Let \mathbb{W} denote the set of words in the three letters 0 , 1 , and 2 . We regard W as a subset of \mathbb{W}. We denote by $\mathbb{W}_{2} \subset \mathbb{W}$ the subset of elements of \mathbb{W} which is either equal to e or a word which ends with the letter 2 . Any element w of \mathbb{W}_{2} is uniquely written as

$$
w=w^{(1)} 2 w^{(2)} 2 \cdots 2 w^{(r-1)} 2 w^{(r)} 2
$$

with $w^{(1)}, \ldots, w^{(r)} \in W$. We denote by $\mathbb{K}(w)$ the sequence

$$
\mathbb{K}(w)=\left(\mathbb{k}\left(1 w^{(1)}\right), \mathbb{k}\left(1 w^{(2)}\right), \ldots, \mathbb{k}\left(1 w^{(r)}\right)\right)
$$

of indices. This gives a one-to-one correspondence between the elements in \mathbb{W}_{2} and a finite sequence of indices.

Let $T_{2}: W \rightarrow \mathbb{W}$ denote the map defined as follows: for $w \in W, T_{2}(w)$ is the word obtained by replacing the letters 0 in $(w)^{\leftrightarrow}$ with 2 . For example we have $T_{2}(01001)=12212$.

We have the following (non-trivial) formula, whose proof will be given in Section A. 3 of the appendix.

Proposition 3.2. Let $w \in \mathbb{W}_{2}$. Suppose $w \neq e$ and w does not contain the letter 0 . Then we have $Z_{p}(\mathbb{K}(w))=0$.
3.3.3. The $\operatorname{sum} Z_{p}(v, w)$. Let $v, w \in W$. In the computation of p-adic MZV's, the sum

$$
(-1)^{\ell(w)+1} \sum_{w^{\prime}} Z_{p}\left(\mathbb{K}\left(w^{\prime} 2\right)\right)
$$

(here $\ell(w)$ denotes the length of the word w, and w^{\prime} in the sum runs over the shuffles of the words v and $T_{2}(w)$) plays an important role. We denote this sum by $Z_{p}(v, w)$.

It seems important to compute the p-adic orders of $Z_{p}(v, w)$ for various $v, w \in W$. The following formula is non-trivial, and is proved by using a strengthened version of Proposition 3.2 and the theory of Coleman integrals. Details of the proof will be given in Section A. 5 of the appendix.
Proposition 3.3. Let $v, w \in W$. Then we have

$$
Z_{p}(1 v, w)=Z_{p}(v, w 1)
$$

For $(v, w) \in W \times W$, we set

$$
\widetilde{Z}_{p}(v, w)=\sum_{\left(w^{\prime}, w^{\prime \prime}\right) \in Y_{0}(w)} Z_{p}\left(v w^{\prime}, w^{\prime \prime}\right)
$$

Proposition 3.4. Let $v, w \in W$. We then have
(1) $\widetilde{Z}_{p}(v 1, w)=\widetilde{Z}_{p}(v, 1 w)$,
(2) $\widetilde{Z}_{p}(1 v, w)=\widetilde{Z}_{p}(v, w 1)$,
(3) $\widetilde{Z}_{p}(v, e)=0$.

Proof. The claims (1), (3) are obvious. The claim (2) follows from Proposition 3.3.
3.3.4. The algorithm. Let $\widetilde{Z}: \widetilde{B} \rightarrow \mathbb{Q}_{p}$ be the ring homomorphism defined as follows: for $(v, w) \in W \times W$, the homomorphism \widetilde{Z} sends $\widetilde{X}_{v, w}$ to $\widetilde{Z}_{p}(v, w)$. It follows from Proposition 3.4 that the homomorphism $\widetilde{Z}: \widetilde{B} \rightarrow \mathbb{Q}_{p}$ factors through the projection $\widetilde{B} \rightarrow B$. We denote by Z the induced homomorphism $B \rightarrow \mathbb{Q}_{p}$.
Theorem 3.5. Let $w \in W_{1}$ and let us write $H(e, w)=\sum_{v \in W} b_{v}[v]$. We then have
(1) If $\ell(v) \geq \ell(w)$ and $v \neq w$, then we have $b_{v}=0$.
(2) We have $b_{w}=1$.
(3) If $v \notin W_{1}$, then we have $Z\left(b_{v}\right)=0$.
(4) We have

$$
\begin{equation*}
p^{-\ell(w)} \zeta_{p}(\mathbb{k}(w))=\sum_{v \in W_{1}} Z_{p}\left(b_{v}\right) \zeta_{p}(\mathbb{k}(v)) \tag{3.3}
\end{equation*}
$$

By using this theorem, we can inductively compute $\zeta_{p}(\mathbb{k})$.
3.3.5. A variant. We extend the homomorphism $Z: B \rightarrow \mathbb{Q}_{p}$ to the homomorphism $Z: B[s] \rightarrow \mathbb{Q}_{p}$ by setting $Z(s)=1 / p$.

Theorem 3.6. Let $w \in W_{1}$ and let us write $H^{\prime}(e, w)=\sum_{v \in W} b_{v}^{\prime}[v]$. We then have:
(1) If $\ell(v) \geq \ell(w)$ and $v \neq w$, then we have $b_{v}^{\prime}=0$.
(2) We have $b_{w}^{\prime}=1$.
(3) If $v \notin W_{1}$, then we have $Z\left(b_{v}^{\prime}\right)=0$.
(4) We have

$$
\begin{equation*}
p^{-\ell(w)} \zeta_{p}(\mathbb{k}(w))=\sum_{v \in W_{1}} Z_{p}\left(b_{v}^{\prime}\right) \zeta_{p}(\mathbb{k}(v)) . \tag{3.4}
\end{equation*}
$$

We can inductively compute $\zeta_{p}(\mathbb{k})$ also by using this theorem. It seems that the latter algorithm is more effective.

References

[F] Furusho, H.: p-adic multiple zeta values I. Invent. Math. 155, 253-286 (2004)
[H] Hoffman, M. E.: Quasi-symmetric functions and mod p multiple harmonic sums. Preprint math/0401319
[Zh] Zhao, J.: Wolstenholme type theorem for multiple harmonic sums. Int. J. Number Theory 4, no. 1, 73-106 (2008)

Appendix A. Proofs of Proposition 3.2 and 3.3

In this appendix we give proofs of Proposition 3.2 and 3.3.

A.1. Notation.

A.1.1. In this appendix we fix a prime number p. We denote by \mathbb{Q}_{p} the field of p-adic numbers. For $x \in \mathbb{Q}_{p}$, we denote by $|x|_{p}$ the p-adic absolute value of x satisfying $|p|_{p}=1 / p$. Let us fix an algebraic closure $\overline{\mathbb{Q}}_{p}$ of \mathbb{Q}_{p}. The absolute value $\left|\left.\right|_{p}\right.$ on \mathbb{Q}_{p} can be uniquely extended to an absolute value on $\overline{\mathbb{Q}}_{p}$, which we denote by the same symbol $\left|\left.\right|_{p}\right.$.
A.1.2. Formal power series. We denote by $\mathbb{Q}_{p}[[z]]$ the ring of formal power series with coefficients in \mathbb{Q}_{p} in the formal variable z. Let $R \subset \mathbb{Q}_{p}[[z]]$ denote the subring of formal power series $f(z)$ which are p-adically convergent on $|z|<1$. By definition, a formal power series $f(z)=\sum_{n \geq 0} a_{n} z^{n} \in \mathbb{Q}_{p}[[z]]$ belongs to R if and only if $\lim _{n \rightarrow \infty}\left|a_{n}\right|_{p} r^{n}=0$ for any real number r with $0<r<1$. Let $f(z) \in R$ and $\zeta \in \mu_{p}$. Let us write $f(z)=\sum_{n \geq 0} a_{n} z^{n}$. For an element $\alpha \in \overline{\mathbb{Q}}_{p}$ with $|\alpha|_{p}<1$, the series $\sum_{n \geq 0} a_{n} \alpha^{n}$ is p-adically convergent to an element in $\overline{\mathbb{Q}}_{p}$. We denote this element by $f(\alpha)$.
A.1.3. Notation for words. We use the following notation for a word with letters in $\{0,1,2\}$, most of which we have already introduced in Section 2.3 for a word with letters in $\{0,1\}$. We denote by e the empty word. For a word w, we denote by $\ell(w)$ the length of w. For a word $w=w_{1} \cdots w_{k}$, we denote by $w^{\leftrightarrow}=w_{k} \cdots w_{1}$ the word obtained by reversing the order of w. For two words v, w, we let $\operatorname{Sh}(v, w)$ denote the multiset of shuffles of v and w.
A.2. The function $\mathcal{L}_{w}(z)$. Let $w=w_{1} \cdots w_{k}$, with $w_{1}, \ldots w_{k} \in\{0,1,2\}$, be a word of letters $0,1,2$. For $i=0,1,2$ let us write

$$
S_{i}(w)=\left\{j \in\{1, \ldots, k\} \mid w_{j}=i\right\}
$$

We denote by M_{w} the set of $(k+1)$-tuples $\left(m_{1}, \ldots, m_{k+1}\right)$ of positive integers satisfying the following three conditions:

- For any $i \in S_{0}(w)$, we have $m_{i}=m_{i+1}$,
- For any $i \in S_{1}(w)$, we have $m_{i}<m_{i+1}$,
- For any $i \in S_{2}(w)$, we have $m_{i} \geq m_{i+1}$.

Let us introduce the following formal power series:

$$
\mathcal{L}_{w}(z)=\sum_{\left(m_{1}, \ldots, m_{k+1}\right) \in M_{w}} \frac{\prod_{j \in S_{2}(w)} C_{p, m_{j}-m_{j+1}}}{m_{1} \cdots m_{k+1}} \cdot z^{m_{k+1}} .
$$

We regard this as an element in $\mathbb{Q}_{p}[[z]]$. One can check easily that $\mathcal{L}_{w}(z)$ belongs to R.

Let w be a word of letters $0,1,2$ which ends with 2 . Let us write $w=w^{\prime} 2$. By definition we have

$$
Z(\mathbb{K}(w))=\frac{1}{p} \sum_{\zeta \in \mu_{p}} \mathcal{L}_{w^{\prime}}(1-\zeta)
$$

Let (v, w) be a pair of words of letters 0,1 . We denote by $T_{2}(w)$ the word of letters 1,2 obtained by replacing the letter 0 in w^{\leftrightarrow} with the letter 2 . Recall that we have defined in Section 3.3.3 the p-adic number $Z_{p}(v, w)$ to be

$$
Z_{p}(v, w)=(-1)^{\ell(w)+1} \sum_{w^{\prime} \in \operatorname{Sh}\left(v, T_{2}(w)\right)} Z\left(\mathbb{K}\left(w^{\prime} 2\right)\right) .
$$

A.3. Proof of Proposition 3.2.

Proposition A.1. For any word w of letters 1,2 and for any $\zeta \in \mu_{p}$, we have $\mathcal{L}_{w}(1-\zeta)=0$.

A.3.1. A strategy of a proof of Proposition A.1. We set

$$
q(z)=\log (1-z)=-\sum_{n \geq 1} \frac{z^{n}}{n}
$$

Observe that $q(1-\zeta)=0$ for $\zeta \in \mu_{p}$, and that $|q(\alpha)|_{p} \leq|\alpha|_{p}<1$ for any $\alpha \in \overline{\mathbb{Q}}_{p}$ with $|\alpha|_{p} \leq 1 / p^{1 /(p-1)}$. Hence it suffices to show the following lemma:

Lemma A.2. There exists a formal power series $f_{w} \in R$ satisfying $f_{w}(0)=0$ and $\mathcal{L}_{w}(z)=f_{w}(q(z))$.

We prove Lemma A. 2 by induction on the length of the word w.
A.3.2. Two operators J_{1} and J_{2}. For $f(z)=\sum_{n \geq 0} a_{n} z^{n} \in \mathbb{Q}[[t]]$, we denote the formal power series $\sum_{n>1} a_{n-1} z^{n} / n$ by $\int_{0}^{z} f(t) d t$. One can check easily that $\int_{0}^{z} f(t) d t \in R$ if $f(z) \in R$.

Let us introduce the following three \mathbb{Q}_{p}-linear endomorphisms $J_{0}, J_{1}, J_{2}: R \rightarrow R$ of R : for $f(z) \in R$, we set

$$
\begin{gathered}
J_{0}(f)=\int_{0}^{z} \frac{f(t)-f(0)}{t} d t \\
J_{1}(f)=\int_{0}^{z} \frac{f(t)}{1-t} d t
\end{gathered}
$$

and

$$
J_{2}(f)=\frac{1}{p} \int_{0}^{z} \sum_{\zeta \in \mu_{p}} \frac{f(t)-f(1-\zeta)}{t-(1-\zeta)} d t
$$

Let $w=w_{1} \cdots w_{k}$ be a word of letters 1,2 . We then have

$$
\mathcal{L}_{w}(z)=J_{w_{k}} \circ \cdots \circ J_{w_{1}} \circ J_{1}(1)
$$

Proof of Lemma A.2. If $w=e$ is an empty word, then $\mathcal{L}_{e}=-q(z)$ and the claim is obvious. Let us assume that $w \neq e$. Let j denote the last letter in w and let us write $w=w^{\prime} j$. By induction hypothesis, there exists a formal power series $f_{w^{\prime}}(z) \in R$ satisfying $\mathcal{L}_{w^{\prime}}(z)=f_{w^{\prime}}(q(z))$. Let us write $f_{w^{\prime}}(z)=\sum_{n \geq 1} a_{n} z^{n}$.

First suppose that $j=1$. We then have

$$
\mathcal{L}_{w}(z)=J_{1}\left(f_{w^{\prime}}(q(z))\right)=\sum_{n \geq 1} a_{n} \int_{0}^{z} \frac{q(t)^{n} d t}{1-t}
$$

Hence we have $\mathcal{L}_{w}(z)=f_{w}(q(z))$ where

$$
f_{w}(z)=-\sum_{n \geq 2} \frac{a_{n-1} z^{n}}{n}
$$

Next suppose that $j=2$. By induction hypothesis we have

$$
\mathcal{L}_{w}(z)=J_{2}\left(f_{w^{\prime}}(q(z))\right)=\frac{1}{p} \int_{0}^{z} \sum_{\zeta \in \mu_{p}} \frac{1}{t-(1-\zeta)} f_{w^{\prime}}(q(t)) d t
$$

For $\zeta \in \mu_{p}$, we have

$$
\frac{1-t}{(1-\zeta)-t}=\frac{e^{q(t)}}{e^{q(t)}-\zeta}
$$

Since

$$
\frac{p}{1-y^{p}}=\sum_{\zeta \in \mu_{p}} \frac{1}{1-\zeta y}
$$

we have

$$
\begin{aligned}
\sum_{\zeta \in \mu_{p}} \frac{t-1}{t-(1-\zeta)} & =\sum_{\zeta^{p}=1} \frac{e^{q(t)}}{e^{q(t)}-\zeta} \\
& =\frac{p}{1-e^{-p q(t)}}=\frac{1}{q(t)} \cdot \frac{-p q(t)}{e^{-p q(t)}-1} \\
& =\sum_{k \geq 0} \frac{(-p)^{k} B_{k}}{k!} q(t)^{k-1}
\end{aligned}
$$

Here B_{k} denotes the k-th Bernoulli number. Observe that the formal power series $\sum_{k \geq 0} \frac{(-p)^{k} B_{k}}{k!} z^{k}$ belongs to R. Hence we have

$$
\mathcal{L}_{w}(z)=J_{2}\left(f_{w^{\prime}}(q(z))\right)=\frac{1}{p} \int_{0}^{z} \frac{1}{t-1} \sum_{k \geq 0, n \geq 1} \frac{(-p)^{k} B_{k} a_{n}}{k!} q(t)^{k+n-1} d t=f_{w}(q(z))
$$

where

$$
f_{w}(z)=\frac{1}{p} \sum_{k \geq 0, n \geq 1} \frac{(-p)^{k} B_{k} a_{n}}{(k+n) k!} z^{k+n}
$$

This proves the claim.
This completes the proof of Proposition A.1.
Proof of Proposition 3.2. Let w be a word of letters 1, 2 which ends with 2. We prove that $Z(\mathbb{K}(w))=0$. Let us write $w=w^{\prime} 2$. By definition $Z(\mathbb{K}(w))$ is equal to the sum

$$
\frac{1}{p} \sum_{\zeta \in \mu_{p}} \mathcal{L}_{w^{\prime}}(1-\zeta)
$$

Hence the claim follows from Proposition A.1.
A.4. A description of $Z_{p}(v, w)$.
A.4.1. Some iterated integrals. We set $S=\{1,2\} \amalg\left\{1-\zeta \mid \zeta \in \mu_{p}\right\}$. When $p=2$, we distinguish $2 \in\{1,2\}$ with $1-(-1)$. For $\alpha \in S$, we set

$$
\omega_{\alpha}= \begin{cases}\frac{d z}{1-z} & \text { if } \alpha=1 \\ \frac{d z}{z-\alpha} & \text { if } \alpha=1-\zeta \text { for some } \zeta \in \mu_{p} \\ \frac{1}{p} \sum_{\zeta \in \mu_{p}} \omega_{1-\zeta}, & \text { if } \alpha=2\end{cases}
$$

Let $\log _{p}: \overline{\mathbb{Q}}_{p}^{\times} \rightarrow \overline{\mathbb{Q}}$ denote the branch of p-adic logarithm characterized by $\log _{p}(p)=$ 0 . For a word $\alpha=\alpha_{1} \cdots \alpha_{k}$ of letters in S and for $\beta \in S$ we let $\widetilde{\mathrm{I}}(\alpha, \beta)$ denote the regularized iterated integral

$$
\widetilde{\mathrm{II}}(\alpha, \beta)=\int_{0}^{\beta} \omega_{\alpha_{k}} \circ \cdots \circ \omega_{\alpha_{1}}
$$

with respect to the branch $\log _{p}$ of p-adic logarithm. This regularized iterated integral is an element of $\mathbb{Q}_{p}[T]$. We denote by $\mathrm{II}(\alpha, \beta)$ the constant term of $\widetilde{\mathrm{I}}(\alpha, \beta)$.
A.4.2. Auxiliary lemmas. For a word w of letters $0,1,2$ which ends with 2 and for an integer $r \geq 1$, let us introduce the following set of r-tuples of words of letters 0 , 1,2 :

$$
D_{r}(w)=\left\{\left(w^{(1)}, \ldots, w^{(r)}\right) \mid w=w^{(1)} 2 w^{(2)} \cdots 2 w^{(r)} 2\right\}
$$

The following lemma can be checked easily:
Lemma A.3. Let w be a word of letters 0,1 , 2. Then $\zeta \in \mu_{p}$, the value $\mathcal{L}_{w}(1-\zeta)$ is equal to the sum

$$
\sum_{r \geq 1} \frac{(-1)^{r-1}}{p^{r-1}} \sum_{\substack{\left(w^{(1)}, \ldots, w^{(r)}\right) \in D_{r}(w) \\ \zeta_{1}, \ldots, \zeta_{r-1} \in \mu_{p}}} \widetilde{\mathrm{I}}\left(1 w^{(1)}, 1-\zeta_{1}\right) \prod_{j=2}^{r} \widetilde{\mathrm{I}}\left(\left(1-\zeta_{j-1}\right) w^{(j)}, 1-\zeta_{j}\right)
$$

Here in the summand we set $\zeta_{r}=\zeta$.
Lemma A.4. Let w be a word of letters 1, 2. Then for any $\zeta \in \mu_{p}$ we have $\widetilde{\mathrm{II}}(1 w, 1-\zeta)=0$.
Proof. This follows from Proposition A. 1 and Lemma A. 3 by induction of the length of w.

Lemma A.5. Let w be a word of letters 1, 2.
(1) Suppose that $w=\overbrace{2 \cdots 2}^{k \text { times }}$ for some $k \geq 0$. Then for any $\zeta \in \mu_{p}$, we have $\widetilde{\mathrm{I}}(w, 1-\zeta)=T^{k} / k!$.
(2) Suppose that w contains the letter 1. Then for any $\zeta \in \mu_{p}$ we have $\widetilde{\mathrm{I}}(w, 1-$ $\zeta)=0$.

Proof. The claim (1) can be checked directly. We prove the claim (2). Let us write ${ }^{k \text { times }}$
$w=\overbrace{2 \cdots 2} v$ where v begins with 1 . We prove the claim by induction on k. If $k=0$, then the claim follows from Lemma A.4. Suppose that $k \geq 1$. Let us write $w=2 w^{\prime}$. By induction hypothesis we have $\widetilde{\mathrm{I}}\left(w^{\prime}, 1-\zeta\right)=0$. By applying the shuffle product formula to $\widetilde{\mathrm{I}}\left(w^{\prime}, 1-\zeta\right) \widetilde{\mathrm{I}}(2,1-\zeta)=0$ and by using induction hypothesis, we have $\widetilde{\mathrm{I}}(w, 1-\zeta)=0$.

A.5. Proof of Proposition 3.3.

Proposition A.6. Let v and w be words of letters 0 , 1 . We set $w^{\prime \prime}=T_{2}(w) 2$. Then $Z_{p}(v, w)$ is equal to the sum

$$
-\sum_{r \geq 1} \frac{1}{p^{r-1}} \sum_{\substack{\left(w^{(1)}, \ldots, w^{(r)}\right) \in D_{r}\left(w^{\prime \prime}\right) \\ v=v^{(1)} \ldots v(r)}} \sum_{\zeta_{1}, \ldots, \zeta_{r} \in \mu_{p}}\binom{\mathrm{II}\left(\left(w^{(1)}\right)^{\leftrightarrow} 1 v^{(1)}, 1-\zeta_{1}\right)}{\times \prod_{j=2}^{r} \mathrm{II}\left(\left(w^{(j)}\right)^{\leftrightarrow}\left(1-\zeta_{j-1}\right) v^{(j)}, 1-\zeta_{j}\right)}
$$

Proof. By Lemma A.3, $Z_{p}(v, w)$ is equal to $(-1)^{\ell(w)+1}$ times the sum (A.1)

$$
\sum_{r \geq 1} \frac{(-1)^{r-1}}{p^{r-1}} \sum_{\substack{\left(w^{(1)}, \ldots, w^{(r)}\right) \in D_{r}\left(w^{\prime \prime}\right) \\ v=v^{(1)} \ldots v^{(r)}}} \sum_{\substack{\left(w^{\prime(1), \ldots, w^{\prime}(r),}, w^{\prime}(i) \in \operatorname{Sh}\left(v^{(i)}, w^{(i)}\right)\right.}} \sum_{\zeta_{1}, \ldots, \zeta_{r} \in \mu_{p}}\binom{\mathrm{II}\left(1 w^{\prime(1)}, 1-\zeta_{1}\right)}{\times \prod_{j=2}^{r} \mathrm{II}\left(\left(1-\zeta_{j-1}\right) w^{\prime(j)}, 1-\zeta_{j}\right)} .
$$

Let us write $w^{(i)}=w_{1}^{(i)} \cdots w_{k_{i}}^{(i)}$. By the shuffle product formula we have

$$
\begin{aligned}
& \sum_{w^{\prime(1)} \in \operatorname{Sh}\left(v^{(1)}, w^{(1)}\right)} \mathrm{II}\left(1 w^{\prime(1)}, 1-\zeta_{1}\right) \\
= & \sum_{i=0}^{k_{1}}(-1)^{i} \operatorname{II}\left(w_{i}^{(1)} \cdots w_{1}^{(1)} 1 v^{(1)}, 1-\zeta_{1}\right) \operatorname{II}\left(w_{i+1}^{(1)} \cdots w_{k_{1}}^{(1)}, 1-\zeta_{1}\right),
\end{aligned}
$$

and

$$
\begin{aligned}
& \sum_{w^{\prime(j)} \in \operatorname{Sh}\left(v^{(j)}, w^{(j)}\right)} \mathrm{II}\left(\left(1-\zeta_{j-1}\right) w^{\prime(j)}, 1-\zeta_{j}\right) \\
= & \sum_{i=0}^{k_{1}}(-1)^{i} \mathrm{II}\left(w_{i}^{(j)} \cdots w_{1}^{(j)}\left(1-\zeta_{j-1}\right) v^{(1)}, 1-\zeta_{j}\right) \mathrm{II}\left(w_{i+1}^{(j)} \cdots w_{k_{j}}^{(j)}, 1-\zeta_{j}\right)
\end{aligned}
$$

for $j=2, \ldots, r$.
Hence by Lemma A.5, we have

$$
\begin{equation*}
\sum_{w^{\prime(1)} \in \operatorname{Sh}\left(v^{(1)}, w^{(1)}\right)} \mathrm{II}\left(1 w^{\prime(1)}, 1-\zeta_{1}\right)=(-1)^{k_{1}} \mathrm{II}\left(\left(w^{(1)}\right)^{\leftrightarrow} 1 v^{(1)}, 1-\zeta_{1}\right), \tag{A.2}
\end{equation*}
$$

and
(A.3)
$\sum_{w^{\prime(j)} \in \operatorname{Sh}\left(v^{(j)}, w^{(j)}\right)} \mathrm{II}\left(\left(1-\zeta_{j-1}\right) w^{\prime(j)}, 1-\zeta_{j}\right)=(-1)^{k_{j}} \mathrm{II}\left(\left(w^{(j)}\right) \leftrightarrow\left(1-\zeta_{j-1}\right) v^{(j)}, 1-\zeta\right)$,
for $j=2, \ldots, r$. By applying (A.2) and (A.3) to (A.1), we have the desired equality.

Proof of Proposition 3.3. The claim follows from Proposition A. 6 and Proposition A.1.
A.6. A consequence. For a word w in letters $0,1,2$, for a word $\alpha=\alpha_{1} \cdots \alpha_{k}$ in letters S, and for $\beta \in S$ we set

$$
\widetilde{\mathrm{I}}(w, \alpha, \beta)=\int_{0}^{\beta} \omega_{\alpha_{k}} \circ \cdots \circ \omega_{\alpha_{2}} \circ \mathcal{L}_{w}(z) \omega_{\alpha_{1}}
$$

and denote by $\mathrm{II}(w, \alpha, \beta)$ the constant term of $\widetilde{\mathrm{I}}(w, \alpha, \beta)$.
Proposition A.7. Let v and w be words of letters 0 , 1. We set $w^{\prime \prime}=T_{2}(w) 2$. Then $Z_{p}(v, w)$ is equal to the sum
$-\sum_{r \geq 1} \frac{1}{p^{r-1}} \sum_{\substack{\left(w^{(1)}, \ldots, w^{(r)}\right) \in D_{r}\left(w^{\prime \prime}\right) \\ v=v(1) \ldots v(r)}} \sum_{\zeta_{1}, \ldots, \zeta_{r} \in \mu_{p}}\binom{\mathrm{II}\left(\left(w^{(1)}\right)^{\leftrightarrow}, 1 v^{(1)}, 1-\zeta_{1}\right)}{\times \prod_{j=2}^{r} \mathrm{II}\left(\left(w^{(j)}\right)^{\leftrightarrow},\left(1-\zeta_{j-1}\right) v^{(j)}, 1-\zeta_{j}\right)}$.
Remark A.8. The sum in Corollary A. 7 is easier to calculate than that in Proposition A.6, since $\mathrm{II}\left(w^{\prime}, 1 v^{(1)}, 1-\zeta_{1}\right)$ and $\mathrm{II}\left(w^{\prime},\left(1-\zeta_{j-1}\right) v^{(j)}, 1-\zeta_{j}\right)$ can be easily written as a p-adically convergent series if w is a non-empty word of letters 1 and 2.

Proof. We can show, by using Proposition A.1, that

$$
\mathrm{II}\left(\left(w^{(1)}\right)^{\leftrightarrow} 1 v^{(1)}, 1-\zeta_{1}\right)=\mathrm{II}\left(\left(w^{(1)}\right)^{\leftrightarrow}, 1 v^{(1)}, 1-\zeta_{1}\right)
$$

and

$$
\mathrm{II}\left(\left(w^{(j)}\right)^{\leftrightarrow}\left(1-\zeta_{j-1}\right) v^{(j)}, 1-\zeta_{j}\right)=\mathrm{II}\left(\left(w^{(j)}\right)^{\leftrightarrow},\left(1-\zeta_{j-1}\right) v^{(j)}, 1-\zeta_{j}\right)
$$

for $j=2, \ldots, r$. Hence the claim follows from Proposition A.6.
(S. Yasuda) Department of Mathematics, Osaka university, Tokyonaka, Osaka 5600043, Japan

E-mail address: s-yasuda@math.sci.osaka-u.ac.jp

[^0]: Date: 09 May 2014, modified for ss2018 on August 28, 2018.

