AN ALGORITHM FOR COMPUTING p-ADIC MULTIPLE ZETA VALUES

SEIDAI YASUDA

CONTENTS

1. Introduction 1
 1.1. On this article 1
2. Notation 2
 2.1. Notation for modules 2
 2.2. Notation for the multiple zeta values 2
 2.3. Notation for words 2
3. An algorithm for computing p-adic MZV’s 3
 3.1. The map $H : W \times W \to B[W]$ 3
 3.2. The constants $C_{p,m}$ 5
 3.3. An algorithm 5
References 7
Appendix A. Proofs of Proposition 3.2 and 3.3 7
A.1. Notation 7
A.2. The function $L_w(z)$ 8
A.3. Proof of Proposition 3.2 8
A.4. A description of $Z_p(v, w)$ 10
A.5. Proof of Proposition 3.3 11
A.6. A consequence 12

1. Introduction

1.1. On this article. Let p be a prime number. The aim of this article is to give an algorithm for computing p-adic multiple zeta values defined by Furusho [F]. A rough sketch of our algorithm is as follows:

- Let W denote the set of words of two letters 0, 1. We introduce in Section 2.3.2 a subset $W_1 \subset W$.
- Let \tilde{B} denote the (commutative) polynomial ring over \mathbb{Z} in (infinitely many) variables indexed by $W \times W$. We introduce in Section 3.1.1 a certain quotient ring B of \tilde{B}.
- Let us consider the free B module $B[W]$ with basis W.
- In Section 3.1 we define a map $H : W_1 \times W \to B[W]$ by an inductive method. W, W_1, \tilde{B}, B and H do not depend on the choice of p.
- We introduce in (3.1) an integer $C_{p,m}$ for each integer $m \geq 0$.
- We introduce in Section 3.3.1 a p-adic number $Z_p(k_1, \ldots, k_r) \in \mathbb{Q}_p$ for indices k_1, \ldots, k_r (we refer Section 2.1 for the definition of an index).
- We introduce in Section 3.3.3 a map $\tilde{Z}_p : W \times W \to \mathbb{Q}_p$. We extend this to a homomorphism $\tilde{Z} : \tilde{B} \to \mathbb{Q}_p$ of rings. This homomorphism factors.

Date: 09 May 2014, modified for ss2018 on August 28, 2018.
through the quotient homomorphism $\overline{B} \to B$ and induces a homomorphism $Z : B \to \mathbb{Q}_p$ of rings.

- We can inductively compute the p-adic multiple zeta values by using (3.4). (See section 2.3.3 for the definition of the symbol $k(w)$ which appears in (??).)

The reader can understand the algorithm only by reading the paragraphs and the equation referred above.

The author have made some numerical computation of p-adic multiple zeta values using the algorithm above, which have lead him to a conjecture relating the p-adic multiple zeta values with the mod. p multiple harmonic sums studied by [?] and [Zh].

2. Notation

2.1. Notation for modules. For a set S and for a commutative ring R, we denote by $R[S]$ the free R-module with basis S. For $s \in S$, we denote by the symbol $[s]$ the element s regard as a member of the basis of $R[S]$.

2.2. Notation for the multiple zeta values.

2.2.1. Notation for indices. Let $\mathbb{Z}_{\geq 0}$, $\mathbb{Z}_{>0}$ denote the set of non-negative integers, the set of positive integer, respectively. Let us introduce the following set I:

$$I = \prod_{n \in \mathbb{Z}_{\geq 0}} (\mathbb{Z}_{\geq 1} \times \cdots \times \mathbb{Z}_{\geq 1}).$$

An element of I is called an index. Let $k = (k_1, \ldots, k_n)$ be an index. The integer $|k| = k_1 + \cdots + k_n$ is called the weight of k (when $n = 0$, we understand $|k| = 0$).

The unique index with $|k| = 0$ is called the empty index and is denoted by \emptyset.

2.2.2. Multiple polylogarithms. Let $k = (k_1, \ldots, k_n)$ be an index. Let \angle_n denote the set

$$(2.1) \quad \angle_n = \{(m_1, \ldots, m_n) \in \mathbb{Z}^n \mid 0 < m_1 < \cdots < m_n\}.$$

The following infinite sum is called the multiple polylogarithm with index k:

$$\operatorname{Li}_k(z) = \operatorname{Li}_{k_1, \ldots, k_n}(z) = \sum_{(m_1, \ldots, m_n) \in \angle_n} \frac{z^{m_n}}{m_1^{k_1} \cdots m_n^{k_n}}.$$

We regard it as a formal power series in t with coefficients in \mathbb{Q}. When $k = \emptyset$, we understand $\operatorname{Li}_k(z) = 1$.

2.2.3. Multiple zeta values. We say that an index $k = (k_1, \ldots, k_n)$ is admissible if $k = \emptyset$ or $k_n \geq 2$.

Suppose that $k = (k_1, \ldots, k_n)$ in an admissible index. Then the infinite sum $\operatorname{Li}_k(1)$ converges to a real number which we denote by $\zeta(k)$ or by $\zeta(k_1, \ldots, k_n)$. By definition we have

$$\zeta(k) = \sum_{0 \leq m_1 < \cdots < m_n} \frac{1}{m_1^{k_1} \cdots m_n^{k_n}}.$$

2.3. Notation for words. Let W denote the (non-commutative) free monoid generated by the two elements $0, 1$. We denote by e the unit element of W. We regard an element of W as a word in letters 0 and 1. Any $w \in W$ can be written as $w = w_1 \cdots w_k$, where $k \geq 0$ is an integer and w_1, \ldots, w_k are elements of $\{0, 1\}$. The expression $w_1 \cdots w_k$ of w is called the spelling of w. The integer k is called the length of w and is denoted by $\ell(w)$. For $v, w \in W$, we denote by vw or by $w \circ v$ the word obtained by joining v and w.

\begin{align*}
& \text{\textit{Notation for words.}} \\
& \text{Let W denote the (non-commutative) free monoid generated by the two elements $0, 1$. We denote by e the unit element of W. We regard an element of W} \\
& \text{as a word in letters 0 and 1. Any $w \in W$ can be written as $w = w_1 \cdots w_k$, where $k \geq 0$ is an integer and w_1, \ldots, w_k} \\
& \text{are elements of $\{0, 1\}$. The expression $w_1 \cdots w_k$ of w is called the spelling of w. The integer k} \\
& \text{is called the length of w and is denoted by $\ell(w)$. For $v, w \in W$, we denote by vw or by $w \circ v$ the word obtained by joining v and w.}
\end{align*}
2.3.1. Some inversions of words. Let \(w \in W \) and let \(w = w_1 \cdots w_k \) be the spelling of \(w \). The word \(w_k \cdots w_1 \) is called the order-inversion of \(w \) and is denoted by \((w)^{o} \). Let us write \(w_i' = 1 - w_i \) for \(i = 1, \ldots, k \). The word \(w'_1 \cdots w'_k \) is called the letter-inversion of \(w \) and is denoted by \((w)^{l} \). We have the equality \((w)^{o} = (w)^{l} \). We call the word \((w)^{o} \) the dual of \(w \) and is denoted by \(i(w) \).

2.3.2. The submonoid \(W_1 \subset W \). We let \(W_1 \subset W \) denote the subset of words \(w \in W \) which is either equal to \(e \) or a word which begins with 1. Then \(W_1 \) is a submonoid of \(W \).

2.3.3. The correspondence between indices and words. Let \(k = (k_1, \ldots, k_n) \) be an index. The word

\[
w(k) = 1 \cdot 0 \cdots 0 \cdot 1 \cdot 0 \cdots 1 \cdot \ldots \cdot 1 \cdot 0 \cdots 0
\]

is called the word corresponding to the index \(k \). (Here we understand \(w(k) = e \) when \(k = \emptyset \).) By definition, \(w(k) \) is a word of length \(|k| \) which belongs to \(W_1 \).

For any \(w \in W_1 \), there exists a unique index \(k \) satisfying \(w(k) = w \). We denote this index by \(k(w) \).

3. AN ALGORITHM FOR COMPUTING \(p \)-ADIC MZV’S

3.1. The map \(H : W \times W \to B[W] \).

3.1.1. Some more notation. We denote by \(\widetilde{B} \) the (commutative) polynomial ring with integral coefficients in infinite variables indexed by \(W \times W \). For \((v, w) \in W \times W \), we denote by \(\widetilde{X}_{v, w} \) the element \((v, w)\) regarded as a variable in \(\widetilde{B} \). We denote by \(B \) the quotient of \(\widetilde{B} \) by the ideal generated by the set

\[
\{ \widetilde{X}_{v, 1w} - \widetilde{X}_{v, 1w} | v, w \in W \} \cup \{ \widetilde{X}_{1v, w} - \widetilde{X}_{v, w1} | v, w \in W \} \cup \{ \widetilde{X}_{v, e} | v \in W \}.
\]

For \(v, w \in W \), we denote by \(X_{v, w} \) the image of \(\widetilde{X}_{v, w} \) in \(B \).

For a pair \((v, w) \in W \times W\) satisfying \(vw \in W_1 \), we denote by \(X_{v, w}^{(2)} \) the following element in \(B \):

\[
X_{v, w}^{(2)} = \begin{cases}
0, & \text{if } v = w = e, \\
X_{v, w'}, & \text{if } v = e, w \neq e \text{ (here we set } w = 1w'), \\
X_{w', w'}, & \text{if } v \neq e \text{ (here we set } v = 1v').
\end{cases}
\]

3.1.2. The map \(H : W \times W \to B[W] \). Let us consider the free \(B \)-module \(B[W] \) with basis \(W \). For \(v \in W \), we set

\[
Y(v) = \{(v', v'') \in W \times W | v = v'v''\},
\]

\[
Y_0(v) = \{(v', v'') \in W \times W | v = v'0v''\}
\]

\[
Y_1(v) = \{(v', v'') \in W \times W | v = v'1v''\}.
\]

Let us define a map \(H : W_1 \times W \to B[W] \) inductively by the following rules:
3.1.3. The meaning of $H(v, w)$. Let $(v, w) \in W_1 \times W$ with $vw \in W_1$. We explain the meaning of $H(v, w)$.

Let p be a prime number. Let us define the formal power series $L_{(v, w)} \in \mathbb{Q}[t]$ inductively by the following rules:

- $L_{(v, w)}(z) = \text{Li}_{k(v)}(z)$
- Suppose $w \neq e$ and let us write $w = w'x$ with $x \in \{0, 1\}$. Then

 $$dL_{(v, w)}(z) = \begin{cases} \frac{d\varphi(z)}{\varphi(z)}, & x = 0, \\ L_{(v, w)}(z) \frac{d\varphi(z)}{\varphi(z)}, & x = 1 \end{cases}$$

(here $\varphi(z) = 1 - (1 - z)^p$ and $L_{(v, w)}(0) = 0$).

Later we will introduce a ring homomorphism $Z : B \to \mathbb{Q}_p$. Let us write $H(v, w) = \sum_{w'} b_{w'}[w']$. Then $\sum_w Z(b_{w'}) \zeta_p(k(w'))$ can be interpreted as the value at $z = 1$ of an suitable analytic continuation of the power series $L_{(v, w)}(z)$.

3.1.4. Variant. The map $H' : W \times W \to B[s][W]$. Let us consider the polynomial ring $B[s]$ over B in one variable s. Let us define a map $H' : W_1 \times W \to B[s][W]$ inductively by the following rules:

- For any $v \in W_1$, $w \in W$ with $vw \in W_1$,

 $$H'(v, w) = [vw] + \sum_{(v', w') \in Y(v)} X_{v', w'}[v'] + \sum_{(w', w') \in Y(w)} X_{e, w'}[vw']$$

 $$- \sum_{(w', w') \in Y_0(w)} \left(\sum_{(v', w') \in Y_1(v)} X_{v', w'}(H'(v', w') + H'(v'1, w'')) + \sum_{(v', w') \in Y_1(w)} X_{e, w'}(H'(vv1, w') + H'(vv'1, w'')) \right)$$

 $$+ \sum_{(w', w') \in Y_1(v)} \left(\sum_{(v', w') \in Y_0(v)} X_{v', w'}(H'(v', w') + H'(v'1, w'')) + \sum_{(v', w') \in Y_0(w)} X_{e, w'}(H'(vv0, w') + H'(vv'1, w'')) \right)$$

 $$+ \sum_{(w', w') \in Y_0(v)} \left(\sum_{(v', w') \in Y_1(w)} X_{v', w'}(H'(v', w') + H'(v'1, w'')) + \sum_{(v', w') \in Y_1(v)} X_{e, w'}(H'(vv0, w') + H'(vv'1, w'')) \right)$$

Here any term of the form $H(0, w')$ are understood to be zero.
- For any $w \in W$ which begins with 0, we have $H(e, w) = 0$.

For any $v \in W_1$, $w \in W$ with $vw \in W_1$,

$$H(v, w) = [vw] + \sum_{(v', w') \in Y(v)} X_{v', w'}[v'] + \sum_{(w', w') \in Y(w)} X_{e, w'}[vw']$$

$$- \sum_{(w', w') \in Y_0(w)} \left(\sum_{(v', w') \in Y_1(v)} X_{v', w'}(H'(v', w') + H'(v'1, w'')) + \sum_{(v', w') \in Y_1(w)} X_{e, w'}(H'(vv1, w') + H'(vv'1, w'')) \right)$$

$$+ \sum_{(w', w') \in Y_1(v)} \left(\sum_{(v', w') \in Y_0(v)} X_{v', w'}(H'(v', w') + H'(v'1, w'')) + \sum_{(v', w') \in Y_0(w)} X_{e, w'}(H'(vv0, w') + H'(vv'1, w'')) \right)$$

$$+ \sum_{(w', w') \in Y_0(v)} \left(\sum_{(v', w') \in Y_1(w)} X_{v', w'}(H'(v', w') + H'(v'1, w'')) + \sum_{(v', w') \in Y_1(v)} X_{e, w'}(H'(vv0, w') + H'(vv'1, w'')) \right)$$
Here all the terms of the form $H'(0, w')$ in the right hand side are assumed to be zero, and any term of the form $H'(1, w')$ is understood to be $s^{(w')^2 + 1}[1w'].$

- For any $w \in W$ which begins with 0, we have $H'(e, w) = 0$.

3.2. The constants $C_{p,m}$

In this paragraph we fix a prime number p.

For an integer $m \geq 0$, we denote by $C_{p,m}$ the following integer

\begin{equation}
C_{p,m} = \sum_{0 \leq s \leq \lfloor \frac{m}{p^1} \rfloor} (-1)^s \left(\frac{m}{p^s} \right).
\end{equation}

If we let $\mu_p \subset \mathbb{Q}_p$ denote the set of p-th roots of unity, then we have

\begin{equation}
C_{p,m} = \frac{1}{p} \sum_{s \in \mu_p} (1 - \zeta)^m.
\end{equation}

This shows that the p-adic order of $C_{p,m}$ is at least $\max\left(\frac{m}{p - 1} - 1, 0 \right)$. We can check that this bound of $\ord_p(C_{p,m})$ is optimal when m is divisible by $p - 1$. Moreover we have:

Lemma 3.1. Let us write $m = pm' + r$ with $0 \leq r - 1$. Let s be the unique integer satisfying $0 \leq s \leq p - 2$ and $m' + s \equiv 0 \mod (p - 1)\mathbb{Z}$. We then have

1. If $r = s = 0$, then $\ord_p(C_{p,m})$ is equal to $\max(\left\lfloor \frac{m}{p - 1} \right\rfloor - 1, 0) = \max(\frac{pm'}{p - 1} - 1, 0)$.

2. If $r \neq 0$ and $s = 0$, then $\ord_p(C_{p,m})$ is equal to $\max(\left\lfloor \frac{m}{p - 1} \right\rfloor - 1, 0) = \frac{pm'}{p - 1}$.

3. Suppose that $s \neq 0$. Then

\[\sum_{j=1}^{r} (-1)^j \binom{r}{j} j^s\]

is not divisible by p if and only if $\ord_p(C_{p,m})$ is equal to $\max\left(\left\lfloor \frac{m}{p - 1} \right\rfloor - 1, 0 \right) = \left\lfloor \frac{pm'}{p - 1} \right\rfloor$.

\[\square\]

When m is divisible by p and not divisible by $p - 1$, then m does not satisfy any of the three conditions in the lemma above. In this case we can see that $\ord_p(C_{p,m})$ is strictly smaller that $\max\left(\frac{m}{p - 1} - 1, 0 \right)$. For example if m is odd and is divisible by p, then it can be checked easily that $C_{p,m} = 0$.

3.3. An algorithm

3.3.1. The sum $Z_p(k_1, \ldots, k_r)$

Let k_1, \ldots, k_r be finitely many non-empty indices. Let us write $k_i = (k_{i,1}, \ldots, k_{i,n_i})$. We set

\[\zeta_{n_1, \ldots, n_r} = \{(m_{1,1}, \ldots, m_{i,n_i}) | 1 \leq i \leq r \in \zeta_{n_1} \times \cdots \times \zeta_{n_r}, m_{1,1} \geq m_{2,1}, \ldots, m_{r-1,n_{r-1}} \geq m_{r,1}\}\]

We define $Z_p(k_1, \ldots, k_r) \in \mathbb{Q}_p$ to be the sum

\begin{equation}
Z_p(k_1, \ldots, k_r) = \sum_{(m_{1,1}, \ldots, m_{i,n_i})_1 \leq i \leq r \in \zeta_{n_1, \ldots, n_r}} \frac{C_{p,m_1,n_1-m_{2,1}} \cdots C_{p,m_{r-1,n_{r-1}}-m_{r,1}} C_{p,m_{r,n_r}}}{\prod_{1 \leq i \leq r} \prod_{1 \leq j \leq n_i} m_{i,j}^{k_{i,j}}}
\end{equation}

\[\prod_{1 \leq i \leq r} \prod_{1 \leq j \leq n_i} m_{i,j}^{k_{i,j}} \]
3.3.2. Words in three letters. Let \(W \) denote the set of words in the three letters 0, 1, and 2. We regard \(W \) as a subset of \(\mathbb{W} \). We denote by \(\mathbb{W}_2 \subset \mathbb{W} \) the subset of elements of \(\mathbb{W} \) which is either equal to \(e \) or a word which ends with the letter 2. Any element \(w \) of \(\mathbb{W}_2 \) is uniquely written as

\[
 w = w^{(1)} 2w^{(2)} 2 \cdots 2w^{(r-1)} 2w^{(r)} 2
\]

with \(w^{(1)}, \ldots, w^{(r)} \in W \). We denote by \(K(w) \) the sequence

\[
 K(w) = (k(1w^{(1)}), k(1w^{(2)}), \ldots, k(1w^{(r)}))
\]

of indices. This gives a one-to-one correspondence between the elements in \(\mathbb{W}_2 \) and a finite sequence of indices.

Let \(T_2 : W \to \mathbb{W} \) denote the map defined as follows: for \(w \in W \), \(T_2(w) \) is the word obtained by replacing the letters 0 in \((w)^* \) with 2. For example we have \(T_2(01001) = 12212 \).

We have the following (non-trivial) formula, whose proof will be given in Section A.3 of the appendix.

Proposition 3.2. Let \(w \in \mathbb{W}_2 \). Suppose \(w \neq e \) and \(w \) does not contain the letter 0. Then we have \(Z_p(K(w)) = 0 \). \(\square \)

3.3.3. The sum \(Z_p(v, w) \). Let \(v, w \in W \). In the computation of \(p \)-adic MZV’s, the sum

\[
 (-1)^{\ell(w)+1} \sum_{w'} Z_p(K(w' 2))
\]

(here \(\ell(w) \) denotes the length of the word \(w \), and \(w' \) in the sum runs over the shuffles of the words \(v \) and \(T_2(w) \)) plays an important role. We denote this sum by \(Z_p(v, w) \).

It seems important to compute the \(p \)-adic orders of \(Z_p(v, w) \) for various \(v, w \in W \). The following formula is non-trivial, and is proved by using a strengthened version of Proposition 3.2 and the theory of Coleman integrals. Details of the proof will be given in Section A.5 of the appendix.

Proposition 3.3. Let \(v, w \in W \). Then we have

\[
 Z_p(1v, w) = Z_p(v, w 1).
\]

For \((v, w) \in W \times W \), we set

\[
 \tilde{Z}_p(v, w) = \sum_{(w', w'') \in Y_0(w)} Z_p(vw', w'').
\]

Proposition 3.4. Let \(v, w \in W \). We then have

1. \(\tilde{Z}_p(v 1, w) = \tilde{Z}_p(v, 1w) \),
2. \(\tilde{Z}_p(1v, w) = \tilde{Z}_p(v, w 1) \),
3. \(\tilde{Z}_p(v, e) = 0 \).

Proof. The claims (1), (3) are obvious. The claim (2) follows from Proposition 3.3. \(\square \)

3.3.4. The algorithm. Let \(\tilde{Z} : \tilde{B} \to \mathbb{Q}_p \) be the ring homomorphism defined as follows: for \((v, w) \in W \times W \), the homomorphism \(\tilde{Z} \) sends \(\tilde{X}_{v, w} \) to \(\tilde{Z}_p(v, w) \). It follows from Proposition 3.4 that the homomorphism \(\tilde{Z} : \tilde{B} \to \mathbb{Q}_p \) factors through the projection \(\tilde{B} \to B \). We denote by \(Z \) the induced homomorphism \(B \to \mathbb{Q}_p \).

Theorem 3.5. Let \(w \in W_1 \) and let us write \(H(e, w) = \sum_{v \in W} b_v[v] \). We then have
\begin{equation}
\sum_{\ell(v) \geq \ell(w) \text{ and } v \neq w} a_{v} x^{v} = \sum_{n \geq 0} a_{n} x^{n} \in \mathbb{Q}_{p}[x].
\end{equation}

(1) If \(\ell(v) \geq \ell(w) \) and \(v \neq w \), then we have \(b_{w} = 0 \).

(2) We have \(b_{w} = 1 \).

(3) If \(v \notin W_{1} \), then we have \(Z(b_{v}) = 0 \).

(4) We have

\begin{equation}
p^{-\ell(w)}\zeta_{p}(k(w)) = \sum_{v \in W_{1} \setminus W} Z_{p}(b_{v})\zeta_{p}(k(v)).
\end{equation}

By using this theorem, we can inductively compute \(\zeta_{p}(k) \).

3.3.5. A variant. We extend the homomorphism \(Z : B \to \mathbb{Q}_{p} \) to the homomorphism \(Z : B[s] \to \mathbb{Q}_{p} \) by setting \(Z(s) = 1/p \).

Theorem 3.6. Let \(w \in W_{1} \) and let us write \(H'(e, w) = \sum_{v \in W} b'_{v}[v] \). We then have:

1. If \(\ell(v) \geq \ell(w) \) and \(v \neq w \), then we have \(b'_{w} = 0 \).
2. We have \(b'_{w} = 1 \).
3. If \(v \notin W_{1} \), then we have \(Z(b'_{v}) = 0 \).
4. We have

\begin{equation}
p^{-\ell(w)}\zeta_{p}(k(w)) = \sum_{v \in W_{1} \setminus W} Z_{p}(b'_{v})\zeta_{p}(k(v)).
\end{equation}

We can inductively compute \(\zeta_{p}(k) \) also by using this theorem. It seems that the latter algorithm is more effective.

References

Appendix A. Proofs of Proposition 3.2 and 3.3

In this appendix we give proofs of Proposition 3.2 and 3.3.

A.1. Notation.

A.1.1. In this appendix we fix a prime number \(p \). We denote by \(\mathbb{Q}_{p} \) the field of \(p \)-adic numbers. For \(x \in \mathbb{Q}_{p} \), we denote by \(|x|_{p} \) the \(p \)-adic absolute value of \(x \) satisfying \(|p|_{p} = 1/p \). Let us fix an algebraic closure \(\overline{\mathbb{Q}}_{p} \) of \(\mathbb{Q}_{p} \). The absolute value \(| \cdot |_{p} \) on \(\mathbb{Q}_{p} \) can be uniquely extended to an absolute value on \(\overline{\mathbb{Q}}_{p} \), which we denote by the same symbol \(| \cdot |_{p} \).

A.1.2. **Formal power series.** We denote by \(\mathbb{Q}_{p}[[z]] \) the ring of formal power series with coefficients in \(\mathbb{Q}_{p} \) in the formal variable \(z \). Let \(R \subset \mathbb{Q}_{p}[[z]] \) denote the subring of formal power series \(f(z) \) which are \(p \)-adically convergent on \(|z| < 1 \). By definition, a formal power series \(f(z) = \sum_{n \geq 0} a_{n} z^{n} \in \mathbb{Q}_{p}[[z]] \) belongs to \(R \) if and only if \(\lim_{n \to \infty} |a_{n}|_{p} r^{n} = 0 \) for any real number \(r \) with \(0 < r < 1 \). Let \(f(z) \in R \) and \(\zeta \in \mathbb{Q}_{p}^{*} \). Let us write \(f(z) = \sum_{n \geq 0} a_{n} z^{n} \). For an element \(\alpha \in \overline{\mathbb{Q}}_{p} \) with \(|\alpha|_{p} < 1 \), the series \(\sum_{n \geq 0} a_{n} \alpha^{n} \) is \(p \)-adically convergent to an element in \(\overline{\mathbb{Q}}_{p} \). We denote this element by \(f(\alpha) \).
A.1.3. Notation for words. We use the following notation for a word with letters in \{0, 1, 2\}, most of which we have already introduced in Section 2.3 for a word with letters in \{0, 1\}. We denote by \(e\) the empty word. For a word \(w\), we denote by \(\ell(w)\) the length of \(w\). For a word \(w = w_1 \cdots w_k\), we denote by \(w^* = w_k \cdots w_1\) the word obtained by reversing the order of \(w\). For two words \(v, w\), we let \(\text{Sh}(v, w)\) denote the multiset of shuffles of \(v\) and \(w\).

A.2. The function \(L_w(z)\). Let \(w = w_1 \cdots w_k\), with \(w_1, \ldots, w_k \in \{0, 1, 2\}\), be a word of letters 0, 1, 2. For \(i = 0, 1, 2\) let us write

\[S_i(w) = \{ j \in \{1, \ldots, k\} \mid w_j = i \}. \]

We denote by \(M_w\) the set of \((k + 1)\)-tuples \((m_1, \ldots, m_{k+1})\) of positive integers satisfying the following three conditions:

- For any \(i \in S_0(w)\), we have \(m_i = m_{i+1}\),
- For any \(i \in S_1(w)\), we have \(m_i < m_{i+1}\),
- For any \(i \in S_2(w)\), we have \(m_i \geq m_{i+1}\).

Let us introduce the following formal power series:

\[
L_w(z) = \sum_{(m_1, \ldots, m_{k+1}) \in M_w} \prod_{j \in S_2(w)} C_{p, m_j - m_{j+1}} \frac{z^{m_{k+1}}}{m_1 \cdots m_{k+1}}.
\]

We regard this as an element in \(\mathbb{Q}_p[[z]]\). One can check easily that \(L_w(z)\) belongs to \(\mathbb{R}\).

Let \(w\) be a word of letters 0, 1, 2 which ends with 2. Let us write \(w = w'2\). By definition we have

\[
Z(\mathbb{K}(w)) = \frac{1}{p} \sum_{\xi \in \mu_p} L_w(1 - \xi).
\]

Let \((v, w)\) be a pair of words of letters 0, 1. We denote by \(T_2(w)\) the word of letters 1, 2 obtained by replacing the letter 0 in \(w^*\) with the letter 2. Recall that we have defined in Section 3.3.3 the \(p\)-adic number \(Z_p(v, w)\) to be

\[
Z_p(v, w) = (-1)^{\ell(w)+1} \sum_{w' \in \text{Sh}(v, T_2(w))} Z(\mathbb{K}(w'2)).
\]

Proposition A.1. For any word \(w\) of letters 1, 2 and for any \(\zeta \in \mu_p\), we have \(L_w(1 - \zeta) = 0\).

A.3.1. A strategy of a proof of Proposition A.1. We set

\[
q(z) = \log(1 - z) = -\sum_{n \geq 1} \frac{z^n}{n}.
\]

Observe that \(q(1 - \zeta) = 0\) for \(\zeta \in \mu_p\), and that \(|q(\alpha)|_p \leq |\alpha|_p < 1\) for any \(\alpha \in \mathbb{T}_p\) with \(|\alpha|_p \leq 1/p^{1/(p-1)}\). Hence it suffices to show the following lemma:

Lemma A.2. There exists a formal power series \(f_w \in \mathbb{R}\) satisfying \(f_w(0) = 0\) and \(L_w(z) = f_w(q(z))\).

We prove Lemma A.2 by induction on the length of the word \(w\).
A.3.2. Two operators J_1 and J_2. For $f(z) = \sum_{n \geq 0} a_n z^n \in \mathbb{Q}[t]$, we denote the formal power series $\sum_{n \geq 1} a_{n-1} z^n / n$ by $\int_0^z f(t) dt$. One can check easily that $\int_0^z f(t) dt \in R$ if $f(z) \in R$.

Let us introduce the following three \mathbb{Q}_p-linear endomorphisms $J_0, J_1, J_2 : R \to R$ of R: for $f(z) \in R$, we set

$$J_0(f) = \int_0^z \frac{f(t) - f(0)}{t} dt,$$

$$J_1(f) = \int_0^z \frac{f(t)}{1 - t} dt,$$

and

$$J_2(f) = \frac{1}{p} \int_0^z \sum_{\zeta \in \mu_p} \frac{f(t) - f(1 - \zeta)}{t - (1 - \zeta)} dt.$$

Let $w = w_1 \cdots w_k$ be a word of letters 1, 2. We then have

$$L_w(z) = J_{w_k} \circ \cdots \circ J_{w_1} \circ J_1(1).$$

Proof of Lemma A.2. If $w = e$ is an empty word, then $L_w = -q(z)$ and the claim is obvious. Let us assume that $w \neq e$. Let j denote the last letter in w and let us write $w = w' j$. By induction hypothesis, there exists a formal power series $f_{w'}(z) \in R$ satisfying $L_{w'}(z) = f_{w'}(q(z))$. Let us write $f_w(z) = \sum_{n \geq 1} a_n z^n$.

First suppose that $j = 1$. We then have

$$L_w(z) = J_1(f_{w'}(q(z))) = \sum_{n \geq 1} a_n \int_0^z \frac{q(t)^n dt}{1 - t}.$$

Hence we have $L_w(z) = f_w(q(z))$ where

$$f_w(z) = - \sum_{n \geq 2} a_{n-1} \frac{z^n}{n}.$$

Next suppose that $j = 2$. By induction hypothesis we have

$$L_w(z) = J_2(f_{w'}(q(z))) = \frac{1}{p} \int_0^z \sum_{\zeta \in \mu_p} \frac{1}{t - (1 - \zeta)} f_{w'}(q(t)) dt.$$

For $\zeta \in \mu_p$, we have

$$\frac{1}{1 - \zeta} - \frac{1}{t - (1 - \zeta)} = \frac{e^{q(t)}}{e^{q(t)} - \zeta}.$$

Since

$$\frac{p}{1 - y^p} = \sum_{\zeta \in \mu_p} \frac{1}{1 - \zeta y},$$

we have

$$\sum_{\zeta \in \mu_p} \frac{t - 1}{t - (1 - \zeta)} = \sum_{\zeta = 1}^{p-1} \frac{e^{q(t)}}{e^{q(t)} - \zeta}.$$

$$= \frac{p}{1 - e^{-pq(t)}} - \frac{1}{q(t)} \frac{-pq(t)}{e^{-pq(t)} - 1}$$

$$= \sum_{k \geq 0} (-p)^k B_k \frac{k!}{k!} q(t)^{k-1}.$$
Lemma A.4. This follows from Proposition A.1 and Lemma A.3 by induction of the length of w.

Proof. II(1)

Here in the summand we set $e_k = 10 S. YASUDA$

This proves the claim. □

This completes the proof of Proposition A.1.

Proof of Proposition 3.2. Let w be a word of letters 1, 2 which ends with 2. We prove that $Z(K(w)) = 0$. Let us write $w = w'2$. By definition $Z(K(w))$ is equal to the sum

$$\frac{1}{p} \sum_{\zeta \mu_p} L_w(1 - \zeta).$$

Hence the claim follows from Proposition A.1. □

A.4. A description of $Z_p(v, w)$.

A.4.1. Some iterated integrals. We set $S = \{1, 2\} \cap \{1 - \zeta \mid \zeta \in \mu_p\}$. When $p = 2$, we distinguish $2 \in \{1, 2\}$ with $1 - (-1)$. For $\alpha \in S$, we set

$$\omega_\alpha = \left\{ \begin{array}{ll}
\frac{d}{dx} & \text{if } \alpha = 1, \\
\frac{1}{p} \sum_{\zeta \mu_p} \omega_{1 - \zeta} & \text{if } \alpha = 1 - \zeta \text{ for some } \zeta \in \mu_p, \\
\omega_{1 - \zeta} & \text{if } \alpha = 2.
\end{array} \right.$$

Let $\log_p : \nu_p^\times \to \mathbb{Q}$ denote the branch of p-adic logarithm characterized by $\log_p(2) = 0$. For a word $\alpha = \alpha_1 \cdots \alpha_k$ of letters in S and for $\beta \in S$ we let $\tilde{\Pi}(\alpha, \beta)$ denote the regularized iterated integral

$$\tilde{\Pi}(\alpha, \beta) = \int_0^\beta \omega_{\alpha_k} \circ \cdots \circ \omega_{\alpha_1}$$

with respect to the branch \log_p of p-adic logarithm. This regularized iterated integral is an element of $\mathbb{Q}[\mathbb{T}]$. We denote by $\Pi(\alpha, \beta)$ the constant term of $\tilde{\Pi}(\alpha, \beta)$.

A.4.2. Auxiliary lemmas. For a word w of letters 0, 1, 2 which ends with 2 and for an integer $r \geq 1$, let us introduce the following set of r-tuples of words of letters 0, 1, 2:

$$D_r(w) = \{(w^{(1)}, \ldots, w^{(r)}) \mid w = w^{(1)}2w^{(2)} \cdots 2w^{(r)}2\}.$$

The following lemma can be checked easily:

Lemma A.3. Let w be a word of letters 0, 1, 2. Then $\zeta \in \mu_p$, the value $L_w(1 - \zeta)$ is equal to the sum

$$\sum_{r \geq 1} \frac{(-1)^{r-1}}{p^{r-1}} \sum_{(w^{(1)}, \ldots, w^{(r)}) \in D_r(w)} \tilde{\Pi}(1w^{(1)}, 1 - \zeta_1) \prod_{j=2}^r \tilde{\Pi}((1 - \zeta_{j-1})w^{(j)}, 1 - \zeta_j).$$

Here in the summand we set $\zeta_r = \zeta$.

Lemma A.4. Let w be a word of letters 1, 2. Then for any $\zeta \in \mu_p$, we have $\tilde{\Pi}(1w, 1 - \zeta) = 0$.

Proof. This follows from Proposition A.1 and Lemma A.3 by induction of the length of w. □
Lemma A.5. Let \(w \) be a word of letters 1, 2.

1. Suppose that \(w = 2 \cdots 2 \) for some \(k \geq 0 \). Then for any \(\zeta \in \mu_p \), we have
\[
\tilde{\Pi}(w, 1 - \zeta) = T^k/k!.
\]

2. Suppose that \(w \) contains the letter 1. Then for any \(\zeta \in \mu_p \) we have \(\tilde{\Pi}(w, 1 - \zeta) = 0 \).

Proof. The claim (1) can be checked directly. We prove the claim (2). Let us write \(w \) as \(w = 2w' \) where \(v \) begins with 1. We prove the claim by induction on \(k \). If \(k = 0 \), then the claim follows from Lemma A.4. Suppose that \(k \geq 1 \), and that \(w = 2w' \) for some \(v \). By induction hypothesis we have \(\tilde{\Pi}(w', 1 - \zeta) = 0 \). By applying the shuffle product formula to \(\tilde{\Pi}(w', 1 - \zeta) \tilde{\Pi}(2, 1 - \zeta) = 0 \) and by using induction hypothesis, we have \(\tilde{\Pi}(w, 1 - \zeta) = 0 \).

\[\square \]

A.5. Proof of Proposition 3.3.

Proposition A.6. Let \(v \) and \(w \) be words of letters 0, 1. We set \(w'' = T_2(w)2 \). Then \(Z_p(v, w) \) is equal to the sum

\[\sum_{r \geq 1} \frac{1}{2^{r-1}} \sum_{(v^{(1)}, \ldots, v^{(r)}) \in D_r(v''1)} \sum_{(w^{(1)}, \ldots, w^{(r)}) \in Sh(v''1, w^{(1)})} \left(\frac{\Pi((w^{(1)})^{\leftrightarrow}1v^{(1)}, 1 - \zeta_1)}{\times \prod_{j = 2}^{r} \Pi((w^{(j)})^{\leftrightarrow}(1 - \zeta_{j-1})v^{(j)}, 1 - \zeta_j)} \right). \]

Proof. By Lemma A.3, \(Z_p(v, w) \) is equal to \((-1)^{f(w)}+1\) times the sum

\[
\sum_{r \geq 1} \frac{(-1)^{r-1}}{2^{r-1}} \sum_{(v^{(1)}, \ldots, v^{(r)}) \in D_r(v''1)} \sum_{(w^{(1)}, \ldots, w^{(r)}) \in Sh(v''1, w^{(1)})} \sum_{(\zeta_1, \ldots, \zeta_r) \in \mu_p} \left(\Pi((1w^{(1)}), 1 - \zeta_1) \times \prod_{j = 2}^{r} \Pi((1 - \zeta_{j-1})w^{(j)}, 1 - \zeta_j) \right). \]

Let us write \(w^{(j)} = w^{(j)}_{k_1} \cdots w^{(j)}_{k_l} \). By the shuffle product formula we have

\[\sum_{w^{(1)} \in Sh(v''1, w^{(1)})} \Pi(1w^{(1)}, 1 - \zeta_1) \]

\[= \sum_{i = 0}^{k_1} (-1)^i \Pi(w^{(1)}_{1} \cdots w^{(1)}_{i} 1v^{(1)}, 1 - \zeta_1) \Pi(w^{(1)}_{i+1} \cdots w^{(1)}_{k_1}, 1 - \zeta_i), \]

and

\[\sum_{w^{(j)} \in Sh(v^{(j)}, w^{(j)})} \Pi((1 - \zeta_{j-1})w^{(j)}, 1 - \zeta_j) \]

\[= \sum_{i = 0}^{k_1} (-1)^i \Pi(w^{(j)}_{1} \cdots w^{(j)}_{i} (1 - \zeta_{j-1})v^{(j)}, 1 - \zeta_j) \Pi(w^{(j)}_{i+1} \cdots w^{(j)}_{k_1}, 1 - \zeta_j) \]

for \(j = 2, \ldots, r \).

Hence by Lemma A.5, we have

\[\sum_{w^{(1)} \in Sh(v''1, w^{(1)})} \Pi(1w^{(1)}, 1 - \zeta_1) = (-1)^{k_1} \Pi((w^{(1)})^{\leftrightarrow}1v^{(1)}, 1 - \zeta_1), \]

and

\[\sum_{w^{(j)} \in Sh(v^{(j)}, w^{(j)})} \Pi((1 - \zeta_{j-1})w^{(j)}, 1 - \zeta_j) = (-1)^{k_1} \Pi((w^{(j)})^{\leftrightarrow}(1 - \zeta_{j-1})v^{(j)}, 1 - \zeta_j), \]
for $j = 2, \ldots, r$. By applying (A.2) and (A.3) to (A.1), we have the desired equality.

□

Proof of Proposition 3.3. The claim follows from Proposition A.6 and Proposition A.1.

□

A.6. A consequence. For a word w in letters 0, 1, 2, for a word $\alpha = \alpha_1 \cdots \alpha_k$ in letters S, and for $\beta \in S$ we set

$$\tilde{\Pi}(w, \alpha, \beta) = \int_0^\beta \omega_{\alpha_k} \circ \cdots \circ \omega_{\alpha_2} \circ \mathcal{L}_w(z) \omega_{\alpha_1}$$

and denote by $\Pi(w, \alpha, \beta)$ the constant term of $\tilde{\Pi}(w, \alpha, \beta)$.

Proposition A.7. Let v and w be words of letters 0, 1. We set $w'' = T_2(w)2$. Then $Z_p(v, w)$ is equal to the sum

$$-\sum_{r \geq 1} \frac{1}{p^{r-1}} \sum_{\substack{w(1) \cdots w(r) \in D_2(w'')}} \sum_{\xi_1 \cdots \xi_r \in \mu_p} \left(\Pi((w(1))^{\ast}, 1v^{(1)}, 1 - \zeta_1) \times \prod_{j=2}^r \Pi((w(j))^{\ast}, (1 - \zeta_{j-1})v^{(j)}, 1 - \zeta_j) \right).$$

Remark A.8. The sum in Corollary A.7 is easier to calculate than that in Proposition A.6, since $\Pi(w', 1v^{(1)}, 1 - \zeta_1)$ and $\Pi(w', (1 - \zeta_{j-1})v^{(j)}, 1 - \zeta_j)$ can be easily written as a p-adically convergent series if w is a non-empty word of letters 1 and 2.

Proof. We can show, by using Proposition A.1, that

$$\Pi((w(1))^{\ast}1v^{(1)}, 1 - \zeta_1) = \Pi((w(1))^{\ast}, 1v^{(1)}, 1 - \zeta_1)$$

and

$$\Pi((w(j))^{\ast}, (1 - \zeta_{j-1})v^{(j)}, 1 - \zeta_j) = \Pi((w(j))^{\ast}, (1 - \zeta_{j-1})v^{(j)}, 1 - \zeta_j)$$

for $j = 2, \ldots, r$. Hence the claim follows from Proposition A.6. □

(S. Yasuda) Department of Mathematics, Osaka University, Toyonaka, Osaka 560-0043, Japan

E-mail address: s-yasuda@math.sci.osaka-u.ac.jp