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Optimal packings of congruent circles on spheres and flat tori

Oleg Musin

University of Texas at Brownsville and Yaroslavl State University

oleg.musin@utb.edu

We consider packings of congruent N circles on spheres (the Tammes problem) and flat square tori.

Toroidal packings are interesting due to a practical reason - the problem of super resolution of images.

We classified all locally optimal spherical arrangements up to N = 11. For packings on tori we have

found optimal arrangements for N = 6, 7 and 8. Surprisingly, for the case N = 7 there are three

different optimal arrangements. Our proofs are based on computer enumerations of spherical and toroidal

irreducible contact graphs. This is joint work with Alexey Tarasov (spheres) and Anton Nikitenko (tori).

The price of SDP relaxations for spherical codes

Alexey Glazyrin

University of Texas at Brownsville and Yaroslavl State University

Alexey.Glazyrin@utb.edu

A spherical code C = {x1, . . . , xM} ⊂ Sn−1 is a subset of points on the sphere in Rn. Another way to

define a spherical code is through a symmetric M ×M matrix T with tii = 1 (1 ≤ i ≤ M),−1 ≤ tij ≤
1 (1 ≤ i ̸= j ≤ M) that satisfies

T ⪰ 0; rank(T ) ≤ n. (1)

In other words, T is a Gram matrix of a set of unit vectors that form C.
The Delsarte method and its SDP extension rely on a set of relaxations of the condition rank(T ) ≤ n

for a configuration of points on the sphere. Let G
(n)
k (t) be the classical Gegenbauer polynomial of degree

k, and consider the M ×M matrix (G
(n)
k (tij))1≤i,j≤M where the matrix elements are the values of G

(n)
k

evaluated at tij = (xi, xj). By a well-known Schoenberg’s theorem, this matrix is positive semidefinite for

all k

(G
(n)
k (tij)) ⪰ 0 (k = 1, 2, . . . ). (2)

The Delsarte method further replaces (2) with the conditions∑
i,j

G
(n)
k (tij) ≥ 0 (k = 1, 2, . . . ). (3)

This talk is devoted to the question of the gap between the exact description of codes (1) and the relaxed

ones (2)-(3).

This is joint work with Oleg Musin.
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On critical exponents of matroids and linear codes

Keisuke Shiromoto

Kumamoto University

keisuke@kumamoto-u.ac.jp

The critical exponent of a matroid is one of the important parameters in matroid theory which is

related to the critical problem. A representable matroid over a finite field is corresponding to a linear

code over the field. In this talk, we give a bound on critical exponents of linear codes and give a

construction of linear codes which attain the equality of the bound.

Evolution equations for quadrature identities

Michiaki Onodera

Kyushu University

onodera@imi.kyushu-u.ac.jp

One of the classical problems in potential theory is to specify a surface Γ for a prescribed electric

charge density µ in such a way that the uniform distribution of electric charges on Γ produces the same

potential (at least in a neighborhood of the infinity) as µ. To derive a mathematical formulation of the

problem precisely, let E be the fundamental solution of −∆ in RN , i.e.,

E(x) :=


− 1

2π
log |x| (N = 2),

1

N(N − 2)ωN |x|N−2
(N ≥ 3),

where ωN is the area of the unit ball in RN , and let HN−1⌊Γ denote the (N − 1)-dimensional Hausdorff

measure restricted to Γ. Then, the problem can be stated as follows: for a prescribed finite Radon

measure µ with compact support in RN , find a (N −1)-dimensional closed surface Γ enclosing a bounded

domain Ω such that E ∗ µ = E ∗ HN−1⌊Γ in RN \ Ω, i.e.,∫
E(x− y) dµ(y) =

∫
Γ

E(x− y) dHN−1(y)
(
x ∈ RN \ Ω

)
. (4)

It can be shown that (4) is equivalent to the identity∫
h dµ =

∫
Γ

h dHN−1 (5)

holding for all harmonic functions h defined in a neighborhood of Ω.

Definition 1. A closed surface Γ satisfying (5) is called a quadrature surface of µ for harmonic functions.

The mean value property of harmonic functions implies that (5) is valid when µ = NωNδ0 and

Γ = ∂B(0, 1), where δ0 is the Dirac measure supported at the origin and B(0, 1) is the unit ball in RN .

Thus, the identity (5) can be seen as a generalization of the mean value formula for harmonic functions.

The existence of a quadrature surface Γ of a prescribed µ has been studied by several authors with

different approaches. Developing the idea of super/subsolutions of Beurling [2], Henrot [4] was able

to prove that the existence of Γ is guaranteed when a supersolution and a subsolution are available.

Gustafsson & Shahgholian [3] followed a variational approach developed by Alt & Caffarelli [1], namely,

they consider the minimization problem for the functional

J(u) :=

∫
RN

(
|∇u|2 − 2fu+ χ{u>0}

)
dx,

2
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and obtain the existence and regularity of a minimizer u. Then, u satisfies the Euler-Lagrange equation

−∆u = f⌊Ω−HN−1⌊∂Ω, Ω = {u > 0},

and the existence of such a u implies that Γ = ∂Ω is a quadrature surface of µ with dµ = f dx.

However, as pointed out by Henrot [4], the uniqueness of a quadrature surface cannot hold in gen-

eral. The collapse of uniqueness seems to indicate a bifurcation phenomenon of solutions to (5) with

a parametrized measure µ = µ(t). Hence, toward understanding of the uniqueness issue, we need to

consider the corresponding family of surfaces Γ = Γ(t). In this respect, it is natural to ask if there is an

evolution equation describing the moving surfaces {Γ(t)}t>0 such that each Γ(t) is a quadrature surface

of a given parametrized measure µ(t). As a matter of fact, when µ(t) = tδ0 + χΩ(0) and the identity (5)

is replaced by ∫
h dµ =

∫
Ω

h dx, (6)

it is known that the Hele-Shaw flow, a model of interface dynamics in fluid mechanics, surprisingly, plays

the desired role. Here, analogously, a domain Ω satisfying (6) is called a quadrature domain of µ. Hence,

the investigation of the evolution of quadrature domains is reduced to that of the Hele-Shaw flow, and the

latter has been successfully proceeded by complex analysis and the theory of partial differential equations.

We introduce the following geometric evolution equation:

vn = p for x ∈ ∂Ω(t),

where

{
−∆p = µ for x ∈ Ω(t),

(N − 1)Hp+
∂p

∂n
= 0 for x ∈ ∂Ω(t),

(7)

where vn is the growing speed of ∂Ω(t) in the outer normal direction and H is the mean curvature of

∂Ω(t). The following theorem shows that, as desired, for a given ∂Ω(0) as initial surface, the solution

to (7) turns out to be a one-parameter family of quadrature surfaces. Moreover, we will see that (7) is

the only possible flow having this property. Here, we call {∂Ω(t)}0≤t<T a C3+α family of surfaces if each

∂Ω(t) is of C3+α and its time derivative is of C2+α, namely, ∂Ω(t) can be locally represented as a graph

of a function in the Hölder space C3+α and its time derivative is in C2+α.

Theorem 2. Let {∂Ω(t)}0≤t<T be a C3+α family of surfaces, and assume that each ∂Ω(t) has positive

mean curvature. Then, each ∂Ω(t) is a quadrature surface of µ(t) := tµ + HN−1⌊∂Ω(0) if and only if

{∂Ω(t)}0≤t<T is a solution to (7).

At this point, we are led to a fundamental question: Does the equation (7) really possess a unique

smooth solution? The following theorem affirmatively answers this question. Here, {∂Ω(t)}0≤t<T is

called a h3+α solution if it is a h3+α family of surfaces and satisfies (7), where h3+α is the so-called little

Hölder space and is defined as the closure of the Schwartz space S of rapidly decreasing functions in the

topology of the Hölder space C3+α.

Theorem 3. There exists a unique h3+α solution {∂Ω(t)}0≤t<T to (7) for any h3+α initial surface ∂Ω(0)

with positive mean curvature.

References
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Descendent sets and codes

Ryoh Fuji-Hara

University of Tsukuba

fujihara@sk.tsukuba.ac.jp

Let S = {1, 2, ..., q} and C ⊂ Sn. To each i = 1, . . . , q, we associate the set C(i) of the elements

appearing in the i-th coordinate, meaning,

C(i) = {ci | (c1, c2, ..., cn) ∈ C}.

The descendent set of C, desc(C), is the set of all possible n-tuples of Sn such that the elements at the

i-th coordinate of desc(C) are from C(i):

desc(C) = C(1)× C(2)× · · · × C(n).

The n-tuples of C are called parents.

Several different codes are defined by descendent sets. We here call them the descendent codes. There

is a descendent code which is defined by a simple condition of descendent set. Let C be a set of n-tuples

of Sn satisfying desc(C) ̸= desc(D) for any C,D ⊂ C such that C ̸= D and |C|, |D| ≤ t. C is called a

t-separable code.

Theorem 1 (M.Cheng and Y. Miao 2011). When t = 2,

M ≤ qn−1 + q(q − 1)/2,

where M is the number of code words of C.

Since the descendent set is a set of n-tuples, there are not many convenient tools for manipulating

sets. Therefore, there are some constructions for only n = 2 and t = 2, 3.

Here we represent a descendent set as a vector over the finite field of order 2. Let ei be the i-th

identity vector of length q, meaning, the vector of length q whose i-th coordinate is 1 and the others are

all 0, and Eq = {e1, e2, ..., eq}. Consider a map σ defined as follow:

σ : s ∈ S 7→ es ∈ Eq

Then, for any x = (c1.c2, ..., cn) ∈ Sn

σ(x) = (σ(c1), σ(c2), ..., σ(cn)) ∈ Eq
n

When C0 = {x,y} ⊂ Sn we define a vector which corresponds to the descendent set of {x,y}:

dv(x,y) = σ(x) ∗ σ(y) + {σ(x) + σ(y)}
= σ(x) ∨ σ(y)

where ∗ is the bit-wise multiplication over F2.

We call dv(x,y) the descendent vector of {x,y}.
For a set containing more than two elements, we use the following property: Let C0 ⊂ Sn,x ∈ Sn\C0,

dv(C0 ∪ {x}) = dv(C0) ∗ σ(x) + {dv(C0) + σ(x)}

The descendent vector is useful for defining, analyzing, and constructing those codes. Here the basic

properties between descendent sets and descendent vectors:

(1) For any C0, C1 ⊂ Sn, desc(C0) = desc(C1) if and only if dv(C0) = dv(C1).

(2) For any C0, C1 ⊂ Sn, desc(C0) ∩ desc(C1) = ∅ if and only if there exists the zero element of F q
2 in

the vector dv(C0) ∗ dv(C1).

4
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(3) For any x ∈ Sn and C0 ⊆ Sn, x is an element of desc(C0) if and only if there exists no zero of F q
2

in the vector dv(C0) ∗ σ(x) (or σ(x) = dv(C0) ∗ σ(x) ).

(4) For any x ∈ Sn and C0 ⊆ Sn, x ∈ desc(C0) if and only if dv(C0) = dv(C0 ∪ {x}).

(5) For any C0, C1 ⊆ Sn, C0 ̸= C1 , desc(C0) ⊆ desc(C1) if and only if dv(C0) ∗ dv(C1) = dv(C0).

(6) For any C0, C1 ⊆ Sn, dv(C0 ∩ C1) ⪯ dv(C0) ∗ dv(C1), where X ⪯ Y if and only if X = X ∗ Y .

(7) For any C0, C1 ⊆ Sn, dv(C0 ∪ C1) = dv(C0) ∗ dv(C1) + {dv(C0) + dv(C1)}.

We discuss the descendent codes focused on the t−separable codes, and their properties and construc-

tions.

Codes and designs for quantum error correction

Yuichiro Fujiwara

California Institute of Technology

yuichiro.fujiwara@caltech.edu

Suppressing the effect of decoherence plays a vital role in the theory of quantum information process-

ing. Despite many physicists’ skepticisms about its feasibility, mathematics proved in 1997 the existence

of an error correction scheme in the quantum domain, giving the birth to the field of quantum error

correction. Since then, the new field has seen remarkably rapid progress in various directions including

experimental realizations of quantum error-correcting codes. While quantum information science draws

on many branches of physics, computer science, and mathematics, combinatorics is rapidly becoming an

indispensable mathematical tool to the study of quantum error correction. In this talk, we overview the

latest developments in quantum error correction where combinatorial design theory and coding theory

play the central role.

Combinatorial coloring of 3-colorable graphs

Ken-ichi Kawarabayashi

National Institute of Informatics

k keniti@nii.ac.jp

Recognizing 3-colorable graph is one of the most famous NP-complete problems [Garey, Johnson,

and Stockmeyer 1974]. The problem of coloring 3-colorable graphs in polynomial time with as few

colors as possible has been intensively studied: O(n1/2) colors [Wigderson J. ACM, 1982], O(n2/5) colors

[Blum 1989], O(n3/8) colors [Blum J. ACM, 1990], O(n1/4) colors [Karger, Motwani, Sudan, J. ACM,

1994], O(n3/14) = O(n0.2142) colors [Blum and Karger IPL’97], O(n0.2111) colors [Arora, Chlamtac, and

Charikar STOC’06], and O(n0.2072) [Chlamtac FOCS’07]. Recently together with M, Thorup, we got

down to O(n0.2049) colors [FOCS’12]. In this talk we get down further to O(n0.19996) = o(n1/5) colors.

Since 1994, the best bounds have all been obtained balancing between combinatorial and semi-definite

approaches. We present a new combinatorial recursion that only makes sense in collaboration with semi-

definite programming. We specifically target the worst-case for semi-definite programming: high degrees.

By focusing on the interplay, we obtained the biggest improvement in the exponent since 1997.
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Cubature rules and orthogonal polynomials

Yuan Xu

University of Oregon

yuan@uoregon.edu

Let Πd
n denote the space of polynomials of degree n in d real variables. Let W be a weight function

defined on a domain Ω ⊂ Rd. A cubature rule of degree 2n − 1 is a finite sum of function evaluations

that approximates the integral against W ,∫
Ω

f(x)W (x)dx =
N∑

k=1

λkf(xk), ∀f ∈ Πd
2n−1,

where λk ∈ R and xk ∈ Rd. We are interested in cubature rules that have minimal or near minimal

N for a fixed n. The nodes {xk} of such a cubature rule are often common zeros of certain orthogonal

polynomials of degree n with respect to W .

Unlike the case of one variable (d = 1), where minimal quadrature rules always have zeros of orthogonal

polynomials as their nodes, the relation between cubature rules and zeros of orthogonal polynomials of

several variables is much more involved and less clear, as it is essentially a relation between algebraic

ideals and their varieties. This talk is aimed at explaining problems in this direction and what are known.

The structure of a typical H-free graph

Bruce Reed

McGill University

breed@cs.mcgill.ca

We show that the vertex set of almost every graph which does not contain a cycle of length six as

an induced subgraph can be partitioned into a stable set and a subgraph containing neither a stable set

of size three nor an induced matching of size 2. We discuss similar precise characterizations of typical

graphs without induced cycles of length k for all k. We present a conjecture about the structure of almost

every graph without H as an induced subgraph for arbitrary H. We discuss various pieces of evidence in

support of this conjecture.

Markov chain Monte Carlo methods for regular two-level
fractional factorial designs and cut ideals

Satoshi Aoki

Kagoshima University

aoki@sci.kagoshima-u.ac.jp

It is known that a set of binomial generators of cut ideals IG of a graph G corresponds to a Markov

basis of the binary graph model of the suspension of G. In this talk, we give another application of cut

ideals to statistics. We show that a set of binomial generators of cut ideals corresponds to a Markov basis

of some regular two-level fractional factorial design. As application, we give a Markov basis of degree 2

for designs defined by at most two relations.
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On the theory of association schemes

Alexander Barg

University of Maryland

abarg@umd.edu

We discuss a way of defining association schemes on infinite, possibly uncountable sets. Joint work

with Maxim Skriganov (Steklov Institute, St. Petersburg, Russia).

An approximate approach to E-optimal designs for weighted
polynomial regression by using Tchebycheff systems and

orthogonal polynomials

Hiroto Sekido

Kyoto University

sekido@amp.i.kyoto-u.ac.jp

E-optimal designs are defined as the multisets of experimental conditions which minimize the maxi-

mum axis of the confidence ellipsoid of estimators. Only a few E-optimal designs are calculated exactly

and analytically, and some of them are calculated by using Tchebycheff systems. In this talk, a new

method for constructing E-optimal designs approximately for weighted polynomial regression with a

nonnegative weight function is proposed. Notions of the Tchebycheff systems and orthogonal polynomi-

als are used in the proposed method.

Discrete geometry on 3 colored point sets in the plane

Mikio Kano

Ibaraki University

kano@mx.ibaraki.ac.jp

1 3 colored point sets in the plane

Let R, B and G denote disjoint sets of red points, blue points and green points in the plane, respectively.

If no three points of R∪B ∪G are collinear, we say that R, B and G are in general position in the plane.

We always assume that given points are in general position.

We begin with the following well-known theorem on two colored point sets in the plane. Note that a

geometric graph is a graph drawn in the plane whose edges are straight line segments, and every edge of

an alternating matching joins two points with distinct colors.

Theorem 1 ([3]). If |R| = |B|, then there exists an alternating non-crossing geometric perfect matching

on R ∪B (see Figure 1).

We generalize the above theorem by considering 3 colored point sets. The proof of the following

theorem is basically similar to that of the above Theorem 1, but more difficult.

7
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blue pointsred points

Figure 1: An alternating non-crossing geometric perfect matching on R ∪B.

blue pointsred points green points

Figure 2: An alternating non-crossing geometric perfect matching on R ∪B ∪G.

Corollary 2 (Kano, Suzuki, Uno [4]). If |R ∪ B ∪ G| = 2n, |R| ≤ n, |B| ≤ n and |G| ≤ n, then there

exists an alternating non-crossing geometric perfect matching on R ∪B ∪G.

It is known as the discrete version of Ham-Sandwich theorem that if |R| = 2m and |B| = 2n, then

there exists a bisector line l such that |left(l) ∩ R| = m and |left(l) ∩ B| = n. It is easy to see that

there exist configurations of 3 colored points in the plane such that there exists no bisector line for three

colors. For a set X of points in the plane, we denote the convex hull of X by conv(X).

Theorem 3 (Bereg and Kano [2]). Assume that |R| = |B| = |G| = n for n ≥ 2. If all the vertices of

conv(R∪B∪G) are red, then there exists a line l such that |right(l)∩R| = |right(l)∩B| = |right(l)∩G| = k

for some integer 1 ≤ k ≤ n− 1 (see Figure 3).

blue pointsred points green points

l

k=3

Figure 3: All the vertices of conv(R∪B ∪G) are red; An line l such that right(l) contains exactly k = 3

red points, k blue points and k green points.

We explain a sketch of the proof of Theorem 3.

Theorem 4 (Berege etc. [1]). Assume that n red points and n blue points and n green points lie on a

circle in the plane. The for every integer 1 ≤ k ≤ n − 1, there exist two intervals I and J on the circle

such that I ∪ J contains exactly k red points, k blue ponts and k green points (see Figure 4).

We shall explain a sketch of the proof of the above Theorem 4.
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blue pointsred points green points

I

J

k=3

n=8

Figure 4: n red points, n blue points and n green points are given on a cricle in the plane; An interval

I ∪ J contains exactly k red points, k blue points and k green points.
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Equiangular lines with angle 1/5 and Seidel matrices with 3
distinct eigenvalues

Ferenc Szöllősi
(joint work in progress with Gary Greaves)

Tohoku University

szoferi@math.bme.hu

Let k, d > 1. A set of lines, represented by the unit vectors v1, v2, . . . , vk ∈ Rd is called equiangular,

if there exists a constant c ∈ R such that | ⟨vi, vj⟩ | = c for all 1 ≤ i < j ≤ k. The Seidel matrix of

the system is the {0,±1} matrix S, Sij = (⟨vi, vj⟩ − δij) /c. It is easy to see that −1/c is the smallest

eigenvalues of S with multiplicity of at least k − d. In this talk we give an overview of Seidel matrices

with smallest eigenvalue −5 and explore Seidel matrices with 3 distinct eigenvalues.

Ehrhart polynomials of polytopes and orthogonal polynomial
systems

Akihiro Higashitani

Osaka University

a-higashitani@cr.math.sci.osaka-u.ac.jp

Ehrhart polynomials of integral convex polytopes are one of well-studied objects in enumerative com-

binatorics and to study roots of Ehrhart polynomials is a fundamental and essential work in this area.

On the other hand, orthogonal polynomial systems (OPS) are of importance and appear in several

areas of mathematics. It is well known that an OPS has an outstanding property on its zeros if the

corresponding moment functional is positive-definite.

In this talk, we will focus on the Ehrhart polynomials of reflexive polytopes, which have a remarkable

property, and discuss the relation between them and OPS. There are some interesting examples of reflexive

polytopes whose Ehrhart polynomials are OPS’s with respect to positive-definite moment functionals,

which will be presented in this talk.

Relation among designs on compact homogeneous spaces

Takayuki Okuda

Tohoku University

okuda@ims.is.tohoku.ac.jp

The concept of spherical design was introduced by Delsarte–Goethals–Seidel in 1977 and similar

definitions were known for designs on rank one compact symmetric spaces, real or complex Grassmannian

manifolds (by Bachoc–Nebe (2002) and Roy (2010), respectively), unitary groups (by Roy (2009)), flag

manifolds (by Meyer (2009)) and complex spheres (by Roy–Suda (preprint)). In this talk, we generalize

such definitions for designs on a general compact homogeneous space G/K and prove that for a compact

Lie group G and closed subgroups K and L of G such that K is included in L, we can construct a

design on G/K as a “product of a design on G/L and that on L/K”. As an application of our result, we

also give a construction of designs on a real Grassmannian manifold GR
m,n from a sequence of spherical

designs on S1, S2, ..., Sn−1, where GR
m,n denotes the manifold consisting of m-dimensional subspaces of

an n-dimensional real vector space.
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