
A DISSERTATION

Extensions of the Conjugate Residual Method

(共役残差法の拡張)

by

Tomohiro Sogabe

Presented to

Department of Applied Physics, The University of Tokyo

Contents

1 Introduction 1

2 Krylov subspace methods 5
2.1 Gram-Schmidt orthogonalization . 6
2.2 Orthogonalization processes for the Krylov subspace 8

2.2.1 The Arnoldi process . 9
2.2.2 The bi-Lanczos process . 11
2.2.3 The complex symmetric Lanczos process 12
2.2.4 The Lanczos process . 13

2.3 Preconditioners . 14
2.3.1 Incomplete LU factorization . 15

2.4 Krylov subspace methods for Hermitian linear systems 16
2.4.1 The CG method . 16
2.4.2 The CR method . 18
2.4.3 The MINRES method . 20

2.5 Krylov subspace methods for complex symmetric linear systems 21
2.5.1 The COCG method . 21
2.5.2 The QMR SYM method . 21

2.6 Krylov subspace methods for non-Hermitian linear systems 23
2.6.1 The QMR method . 23
2.6.2 The Bi-CG method . 24

2.7 Product-type Krylov subspace methods based on Bi-CG 26
2.7.1 Definition of the product-type methods 26
2.7.2 Derivations of CGS, Bi-CGSTAB, and GPBi-CG 27

3 Bi-CR: a biconjugate residual method 30
3.1 Introduction . 30
3.2 An extension of CR without loss of short-term recurrence property 30

3.2.1 H. A. van der Vorst’s derivation of Bi-CG 30
3.2.2 An extension of CR to nonsymmetric linear systems 31
3.2.3 A derivation of Bi-CR for non-Hermitian linear systems 34

3.3 Some properties and other derivations of Bi-CR 36
3.3.1 Some properties . 36
3.3.2 Other derivations . 38

3.4 Numerical experiments . 45
3.5 Concluding remarks . 46

i

4 COCR: a conjugate orthogonal conjugate residual method 50
4.1 Introduction . 50
4.2 An extension of CR to complex symmetric linear systems 51

4.2.1 An observation of deriving CG, CR, and COCG 51
4.2.2 A derivation of COCR . 51
4.2.3 Relationship between COCR and Bi-CR 60

4.3 Numerical experiments . 61
4.4 Concluding remarks . 62

5 CRS: a conjugate residual squared method 64
5.1 A general framework of product-type methods based on Bi-CR 64
5.2 Definition of the residual vector of CRS . 67
5.3 Recurrence formulas for CRS iterates . 67
5.4 Numerical experiments . 70
5.5 Concluding remarks . 77

6 SCGS: a stabilized CGS method 79
6.1 Definition of SCGS . 79
6.2 Recurrence formulas for iterates . 79
6.3 Computational formulas for αn and βn . 80
6.4 Implementation . 82
6.5 Numerical experiments . 86
6.6 Concluding remarks . 89

7 Conclusion 91

A Data structures 94
A.1 Compressed row storage (CRS) . 94
A.2 Compressed diagonal storage (CDS) . 96

B Derivations of successful Krylov subspace methods 99
B.1 KS methods for Hermitian linear systems 99
B.2 KS methods for complex symmetric linear systems 102
B.3 KS methods for non-Hermitian linear systems 103

C Other preconditioners 115
C.1 Preconditioners based on stationary iterative methods 115
C.2 Approximate inverses and polynomial preconditioners 116
C.3 Reorderings for preconditioners . 118

Acknowledgements 119

Bibliography 120

ii

List of Symbols

A, . . . , Z matrices
a, . . . ,z vectors
α, β, . . . , ω scalars
AT transpose of A
AH conjugate transpose (Hermitian) of A
A−1 matrix inverse
A−H the inverse of AH

ᾱ complex conjugate of the scalar α
ai,j matrix element
ai vector element
ux, uxx first, second derivative with respect to x
xn vector x in the nth iteration
(x, y) vector dot product (inner product), defined as xHy
diag(α, β, . . .) diagonal matrix constructed from scalars α, β, . . .
span{a, b, . . .} spanning space of vectors a, b, . . .
Kn(A, u) Krylov subspace, defined as span{u, Au, . . . , An−1u}
κ(A) spectral condition number of matrix A
ρ(A) spectral radius of matrix A
λmax(A), λmin(A) the largest (resp. smallest) absolute value of eigenvalues of A
max{S}, min{S} maximum (resp. minimum) value in set S
Rn(λ) Lanczos polynomial of degree n
R set of real numbers
Rn real n-space
C set of complex numbers
Cn complex n-space
‖X‖ matrix 2-norm
‖X‖F Frobenius norm
‖x‖ vector 2-norm
‖x‖A the “A-norm”, defined as (x, Ax)1/2

B bidiagonal matrix
D diagonal matrix
H Hessenberg matrix
K preconditioner
L (strictly) lower triangular matrix
R, U (strictly) upper triangular matrix
T tridiagonal matrix
δij Kronecker delta
Σ summation∏

multiplication
O(·) “big-oh” asymptotic bound

iii

Chapter 1

Introduction

In many fields of scientific computing, we have to face the fact that most computational
time is spend in solving systems of linear equations

Ax = b,(1.1)

where x, b ∈ CN and the coefficient matrix A ∈ CN×N is generally large and sparse, i.e.,
the percentage of zero entries of the matrix is very large. Hence, it is of great importance
to study efficient solvers for such systems.

Numerical methods for solving (1.1) have been studied by many researchers, and they
are roughly classified into the following three groups:

• Direct Methods;

• Stationary Iterative Methods;

• Krylov Subspace Methods (Nonstationary Iterative Methods).

Direct methods are named after the idea of direct computations of A−1b. For efficiency,
matrix decomposition techniques are used such as the LU decomposition, or Gaussian elim-
ination, and the Cholesky decomposition. In many numerical experiments, direct methods
often give high accuracy of the solution; however they require much memory storage and
computational cost of O(N3) since the decomposed matrices are, generally, not sparse any
longer because of so called fill-in. Hence, decomposition techniques for sparse matrices have
been studied for years [22, 23, 28].

Stationary iterative methods generate approximate solution vectors of (1.1) via the
simple form xn = Bxn−1 + c. Since the matrix B and the vector c do not depend on the
iteration number n, this class of methods is called “stationary”. We can obtain various
methods by the choice of B and c such as the Jacobi method, the Gauss-Seidel method,
and the Successive OverRelaxation (SOR) method [37, 96]. Stationary iterative methods
have an advantage over direct methods in that they only need sparse matrix-vector product
and vector update, and thus they do not require much memory storage. Moreover, these
methods can be easily implemented, and have been studied well for their practical uses.
However, they have some weaknesses: the class of matrices is limited; in terms of infinite
precision arithmetic, the exact solution can not be obtained by finite iteration number,
which may be critical when they show slow convergence behavior. For more details, see a
recent book by Varga [90] that contains much of the theory and some recent results.

1

Krylov subspace methods (KS methods hereafter) have been developed recently; their
algorithms are usually harder to be understood, but they can be highly effective. KS
methods are named after the idea that they generate the nth approximate solution vector
xn of (1.1) over n-dimensional Krylov subspace. Since KS methods differ from stationary
iterative methods in that required information for updating xn changes at each iteration
step, they are also called nonstationary iterative methods. One of the most well-known
KS methods is Conjugate Gradient (CG) proposed by Hestenes and Stiefel [53]. CG is
regarded as an ideal solver for Hermitian positive definite linear systems, and in this case,
CG minimizes A-norm of the error ‖x − xn‖A. On the other hand, since CG does not
minimize anything if the coefficient matrix A is Hermitian indefinite, MINRES [62], CR
[82], and SYMMLQ [62] are often chosen in many practical situations for indefinite systems.
MINRES and CR minimize the 2-norm of the residual ‖b−Axn‖, and SYMMLQ minimizes
the 2-norm of the error ‖x − xn‖. For the property, SYMMLQ seems to be ideal; however
since it finds approximate solutions in different subspaces from ones used by CG, MINRES,
and CR, it is essentially difficult to make comparison with others. Moreover, the 2-norm of
the error is not known, and the practical criteria for convergence is the norm of the residual.
Hence, it requires additional costs for computing residual vectors. Here is one note that
we can also apply CG to Hermitian indefinite systems but in this case it may suffer from
breakdown, i.e., division by zero.

If the coefficient matrix A is non-Hermitian, the above useful solvers can not be applied
directly, and thus it is natural to consider transformed linear systems AHAx = AHb or
AAHx̃ = b, x = AHx̃. AHA and AAH are Hermitian positive definite, and thus CG
should be chosen as their solvers. These ideas lead to CGNR [53] and CGNE [18]. It is
known that LSQR [63] gives better results. These methods are effective in certain class of
systems; however if the original system (1.1) is ill-conditioned, then these methods may give
unreliable solutions because of the use of AHA or AAH with the square of the condition
number of A. Hence, generalized methods of CG, MINRES, and SYMMLQ have been
studied to solve the original system. Bi-CG [56, 35] and FOM [66] can be regarded as
generalizations of CG; GMRES [71] and GCR [31] are natural generalizations of MINRES
and CR respectively, and they minimize the norm of the residual; GMERR [94] is less
known but it minimizes the 2-norm of the error. This property is similar to SYMMLQ.

Of various Krylov subspace methods for non-Hermitian linear systems, Bi-CG and GM-
RES play a very important role in designing more practical variants of them. Since Bi-CG
requires transposed matrix-vector products in its algorithm, P. Sonneveld [81] obtained a
transpose-free variant, called CGS, by using the square of the Bi-CG residual polynomial.
Ideally, CGS would double the convergence rate of Bi-CG, but in many cases, CGS shows
much irregular convergence behavior than Bi-CG. Hence, H. A. van der Vorst [86] derived
one of the most successful variant of Bi-CG, known as Bi-CGSTAB, by using the product of
the Bi-CG residual polynomial and two-term recurrences for smoothing its residual 2-norm.
Based on the idea of Bi-CGSTAB, various generalized methods were proposed such as Bi-
CGSTAB2 [51], Bi-CGSTAB(�) [79], and GPBi-CG [97]. On the other hand, QMR [41] is
an attractive variant of Bi-CG in that it often shows smoother convergence behavior and
unlike Bi-CG, it can evade certain (near) breakdowns by using suitable look-ahead strategy,
e.g., [83, 64]. Similar to CGS, a transposed-free variant of QMR, called TFQMR [39], was
proposed. Using the idea of TFQMR, QMRCGSTAB [15] was proposed as the analogy of
Bi-CGSTAB, and then QMRCGSTAB(k) [84] was proposed as a generalization of QMR-
CGSTAB. On the other hand, (full) GMRES is a robust algorithm but the computational
cost and memory requirement grow linearly as the iteration step increases. Hence, it would

2

be impractical for very large systems. To avoid such problem, restarted and truncated
variants were proposed, which are called GMRES(m) [71] and DQGMRES [73] respec-
tively; however, these approaches often increase the required number of iterations, and
these variants sometimes cause stagnation. Hence, to improve the performance of them,
preconditioning technique such as FGMRES [68], GMRESR [89] and deflated restarting
technique such as GMRES DR [60] and DEFLGMRES(m, l) [32] have been developed.

We have described a brief history of the KS methods for Hermitian and non-Hermitian
cases. It is also natural to consider an algorithm for a certain class of matrices. Here, we
give a brief review of the KS methods for complex symmetric matrices i.e., A = AT �= AH

since there is a strong need for the fast solution in some research fields such as numerical
acoustics, numerical simulation of electromagnetic high-voltage fields, numerical computa-
tion of Green’s function, and discretization of the Helmholtz equation. To solve complex
symmetric linear systems effectively, some useful algorithms have been proposed such as
COCG [88], and QMR [38] (or QMR SYM called in [87, p.112]). Since these methods have
only one matrix-vector product and use short-term recurrences at each iteration step, they
have advantage over any Krylov solver for non-Hermitian systems. If A is real symmetric,
COCG and QMR are mathematically equivalent to CG and MINRES.

In this thesis, we will provide mainly the following four ideas:

(1) CR is extended to non-Hermitian linear systems with low memory requirement. The
main idea for the extension is to relax the condition of CR that the residual vectors
are A-orthogonal. The resulting algorithm is named Bi-CR whose residual vectors
are A-biorthogonal. Some of derivation processes of Bi-CR are based on [75] and [76].
In exact precision arithmetic, Bi-CR generates an exact solution in finite iteration
steps. While Bi-CR does not have a global minimization property, we will show that
Bi-CR often gives smoother convergence behavior than Bi-CG in the residual 2-norm.
This convergence behavior leads to the following two ideas, (2) and (3), for obtaining
useful solvers according to the type of matrices;

(2) Based on [78], CR is extended to complex symmetric linear systems with low memory
requirement. The idea is very similar to the above one (1). The resulting algorithm
is referred to as COCR whose residual vectors are conjugate A-orthogonal. The
computational cost of COCR is about half of the Bi-CR’s. We will show that COCR
is also obtained by applying Bi-CR to complex symmetric linear systems;

(3) Since Bi-CR requires transpose matrix-vector products, a transpose-free variant of Bi-
CR, named CRS, is proposed. The idea comes from the definition of the nth residual
vector of CRS as the product of the Bi-CR residual polynomial of order n and the
nth Bi-CR residual vector. The relationship between Bi-CR and CRS is similar to
that of Bi-CG and CGS. As a generalization of CRS, we will give a framework of
product-type methods based on Bi-CR. The framework mainly comes from [77];

(4) To improve the performance of CGS, the convergence behavior of CGS is stabilized
by introducing a two-term recurrence which includes the CGS residual polynomial
and choosing free parameters so that the residual 2-norm is locally minimized. The
algorithm is referred to as SCGS. We will show that in exact precision arithmetic
SCGS always converges faster than CGS in terms of the number of iteration steps.
This work is based on [74].

3

The thesis is organized as follows:

� Chapter 2: we give mathematical preliminaries sufficient to discuss the theory of the
Krylov subspace methods, and then we describe well-known Krylov subspace methods
for solving Hermitian, complex symmetric, and non-Hermitian linear systems;

� Chapter 3: we give the first idea (1). First, Bi-CR is derived as an extension of CR,
and then other derivations are given. Second, we discuss its properties. Finally, we
compare Bi-CR with Bi-CG to see whether Bi-CR has a potential to be a basic solver
as well as Bi-CG;

� Chapter 4: we give the second idea (2). First, CR is extended to complex symmetric
linear systems and we show that COCR is also derived from the application of Bi-CR
to complex symmetric linear systems. Second, we discuss its properties. Finally, we
give some numerical experiments for evaluating its performance;

� Chapter 5: we give the third idea (3). We show that a transpose-free variant of Bi-
CR, or CRS, can be obtained by the square of the Bi-CR residual polynomial, and
then we give a brief framework of product-type methods based on Bi-CR. Finally, we
compare CRS with other successful solvers such as CGS, Bi-CGSTAB, and GPBi-CG;

� Chapter 6: we give the fourth idea (4). SCGS is proposed for stabilizing the conver-
gence behavior of CGS, and then we prove the theorem that SCGS always converges
faster than CGS in terms of the number of iterations. Finally, we report numerical
results of CGS and SCGS;

� Chapter 7: we make some concluding remarks and give future work.

Since various methods are proposed and described, it may be complicated for readers to
see what work is actually done and new in the present thesis. Hence, we give a research
flow chart below.

Figure 1.1: Research flow chart.

4

Chapter 2

Krylov subspace methods

In this chapter, we will give derivations of representative Krylov subspace methods that fall
in three categories; the ones for Hermitian, complex symmetric, and non-Hermitian linear
systems. We also describe useful preconditioners that have a great potential for accelerating
the speed of convergence of these methods. First of all, a framework of Krylov subspace
methods is given below.

Let x0 be an initial guess, and let r0 := b − Ax0 be the corresponding residual vector.
Then, Krylov subspace methods generate approximate solutions over the following affine
space:

Krylov subspace condition:

xn = x0 + zn, zn ∈ Kn(A, r0),(2.1)

where Kn(A, r0) := span{r0, Ar0, . . . , A
n−1r0}. Then, the corresponding residual vector

rn is given by

rn := b − Axn = r0 − Azn, rn ∈ Kn+1(A, r0).(2.2)

Since xn can not be uniquely determined by using the above condition (2.1), one of the
following conditions needs to be imposed for obtaining a unique approximate solution:

Ritz-Galerkin approach:

rn ⊥ Kn(A, r0),(2.3)

Petrov-Galerkin approach:

rn ⊥ Kn(AH, r∗
0),(2.4)

Minimal residual approach:

rn = min
x∈x0+Kn(A,r0)

‖b − Ax‖.(2.5)

Here, r∗
0 is an arbitrary vector such that (r∗

0, r0) �= 0. To achieve one of the above
approaches, efficient numerical processes for generating (bi-)orthogonal basis vectors of
Kn(A, r0) are required. If the coefficient matrix A is Hermitian, the Lanczos process plays
an important role in meeting the above requirement since only a three-term recurrence

5

is used for generating one of the orthogonal basis. For non-Hermitian case, the Lanczos
process can not be used. Instead, the Arnoldi process or the bi-Lanczos process are use-
ful even though they lose one of the following two properties; three-term recurrences and
orthogonality. The Arnoldi process can generate the orthogonal basis at the cost of low
computational costs and memory. On the other hand, the bi-Lanczos process generates
not orthogonal but bi-orthogonal basis with coupled three-term recurrences. The details of
these processes will be discussed later.

Now, let us show the relationship among representative Krylov subspace methods and
the above three approaches in Table 2.1 and Table 2.2. Looking at Table 2.2, we can also

Table 2.1: Krylov subspace methods for Hermitian linear systems.

Ritz-Galerkin approach Minimal residual approach
Lanczos process CG [53] MINRES [62], CR [82]

Table 2.2: Krylov subspace methods for non-Hermitian linear systems.

Petrov-Galerkin approach Minimal residual approach
Arnoldi process † GMRES [71], GCR [31]

Bi-Lanczos process Bi-CG [56, 35] †

consider iterative solvers that belong to †. However, these solvers are useless in terms of
computational costs and memory. Comparing Table 2.2 with Table 2.1, we see that Bi-CG,
GMRES, and GCR are natural generalizations of CG, MINRES, and CR.

In the next two sections, we describe some processes to generate orthonormal basis of
any subspace and give some useful processes to generate basis of the Krylov subspace.

2.1 Gram-Schmidt orthogonalization

Let A ∈ CN×m, N ≥ m be a matrix of full rank with columns [a1, a2, . . . ,am]. We
consider obtaining the vectors q1, q2, . . . , qm, where qj is orthogonal to q1, . . . , qj−1, lies in
span{a1, . . . ,aj}, and has norm 1. One of the simplest ways for achieving the purpose is
known as the Classical Gram-Schmidt (CGS) orthogonalization described below:

Algorithm 2.1: CGS orthogonalization

set r1,1 = ‖a1‖, q1 =
a1

r1,1
,

for n = 1, 2, . . . , m − 1, do:
ri,n+1 = (qi, an+1), i = 1, 2, . . . , n,

q̃n+1 = an+1 −
n∑

i=1

ri,n+1qi,(2.6)

rn+1,n+1 = ‖q̃n+1‖,
qn+1 =

q̃n+1

rn+1,n+1
.

end

6

By using Qn := [q1, . . . , qn], (2.6) can be written as the following matrix form:

q̃n+1 = (I − QnQH
n)an+1.

The matrix QnQH
n with rank n has n multiple eigenvalues of 1, and thus the matrix I−QnQH

n

has N−n multiple eigenvalues of 1 and the rank is N−n. In terms of computation, although
the rank of I − QnQH

n is not full, the matrix can be highly ill-conditioned because of the
rounding error. Hence, this matrix-vector multiplication may lead to poor orthogonalities of
the basis vectors. On the other hand, an orthogonalization process using the Householder
transformation gives much better accuracy of orthogonality of the basis vectors since it
requires only unitary matrix-vector products.

It is remarkable that changing order of orthogonalization process of Algorithm 2.1 gives
more accurate orthonormal basis vectors. The resulting algorithm is known as the Modified
Gram-Schmidt (MGS) orthogonalization shown in Algorithm 2.2.

Algorithm 2.2: MGS orthogonalization

set r1,1 = ‖a1‖, q1 =
a1

r1,1
,

for n = 1, 2, . . . , m − 1, do:
for i = 1, 2, . . . , n, do:

ri,n+1 = (qi, an+1),
an+1 = an+1 − ri,n+1qi,(2.7)

end
rn+1,n+1 = ‖an+1‖,
qn+1 =

an+1

rn+1,n+1
.

end

CGS and MGS can be regarded as the QR factorization of A. Let Q ∈ CN×m be a matrix
with columns [q1, q2, . . . , qm] and R ∈ Cm×m be an upper triangular matrix with the entries
ri,n. Then, we obtain the following QR factorization of A:

A = QR ⇐⇒ [a1, . . . ,am] = [q1, . . . , qm]

⎛
⎜⎜⎜⎜⎝

r1,1 r1,2 · · · r1,m

r2,2 · · · r2,m

. . .
...

rm,m

⎞
⎟⎟⎟⎟⎠.

To compare CGS and MGS, we use the Hilbert matrix whose i, j element is defined as
(i + j − 1)−1. The Hilbert matrix is well known as a highly ill-conditioned matrix, and
thus it may clarify the difference between the numerical stabilities of the two methods.
The condition number of the Hilbert matrix is shown in Table 2.3, and the result of the
comparison between CGS and MGS is shown in Fig. 2.1, where the vertical axis represents
accuracy of orthogonalities defined as log10 ‖I − Q̃HQ̃‖ with a computed matrix Q̃, and the
horizontal axis represents the order of the Hilbert matrix.

7

Table 2.3: Condition number of the Hilbert matrix.

Order 2 4 6 8 10 12
Cond. 1.9 × 101 1.6 × 104 1.5 × 107 1.5 × 1010 1.6 × 1013 1.8 × 1016

-16

-14

-12

-10

-8

-6

-4

-2

0

2

2 4 6 8 10 12 14

log
10

 o
f t

he
 re

sid
ua

l m
at

rix
 2

-n
or

m

Order of matrix

’CGS’
’MGS’

Figure 2.1: Comparison of CGS and MGS.

We can see from Fig. 2.1 that MGS is numerically robuster than CGS. Actually, in
terms of rounding error analysis, it is known that CGS generates a matrix Q̃ that satisfies

‖I − Q̃HQ̃‖ ≈ u · κ2(A),

and MGS produces a matrix Q̃ that satisfies

‖I − Q̃HQ̃‖ ≈ u · κ(A),(2.8)

where u is a unit roundoff. See, e.g., [45] for CGS and [48, p.232] for MGS. We can also
see from Fig. 2.1 and Table 2.3 that the accuracy of orthogonalities by MGS is nearly
proportional to the condition number of A. This result follows the above proposition (2.8).

For more accurate basis, the Householder implementation is preferred since it generates
the basis such that

‖I − Q̃HQ̃‖ ≈ u.

See [12]. On the other hand, reorthogonalization strategy is competitive with the House-
holder variant, e.g., it is shown that under some assumptions CGS with only one reorthog-
onalization guarantees the level of orthogonality which is close to the unit roundoff [45].
However, these implementations cost about twice as much as MGS.

In the next section, we consider several ways to construct orthonormal basis for Krylov
subspaces.

2.2 Orthogonalization processes for the Krylov subspace

In the previous section, we have seen two orthogonalization processes of linearly independent
vector sequences, and we could see from a simple example that MGS was numerically

8

robuster than CGS. In this section, we describe orthogonalization processes for the Krylov
subspace Km(A, r0).

There are several (bi-)orthogonalization processes for Km(A, r0) corresponding to the
matrix properties:

• A �= AH: the Arnoldi process [1] or the bi-Lanczos process [55];

• A �= AH, A = AT: the complex symmetric Lanczos process [55, 57];

• A = AH: the Lanczos process [55, 57].

The Arnoldi process and the bi-Lanczos process are well known as the Gram-Schmidt-
style iterations for transforming a matrix into Hessenberg form and tridiagonal form. The
complex symmetric Lanczos process and the Lanczos process are the special cases of the
bi-Lanczos process when A is complex symmetric and Hermitian respectively. In that case,
the coefficient matrix can be transformed into tridiagonal form that is complex symmetric
(respectively, Hermitian). It is well known that they are numerically stabler processes than
the (modified) Gram-Schmidt orthogonalization for constructing orthogonal basis of the
Krylov subspace. This fact comes from the reason that CGS and MGS use the vector
sequence r0, Ar0, . . . , A

m−1r0. Hence, for large m, Am−2r0 tends to be close to Am−1r0.
More precisely, since these vectors approximately converge to an eigenvector corresponding
to the largest eigenvalue in absolute value of A, this leads to severe cancellations.

2.2.1 The Arnoldi process

The Arnoldi process has been regarded as a useful orthonormalization procedure for the
Krylov subspace Km(A, r0) generated by the non-Hermitian matrix A and the vector r0.
There are several variants of the Arnoldi process such as the classical Gram-Schmidt variant
and the modified Gram-Schmidt one. First, the classical Gram-Schmidt (CGS) variant is
shown below.

Algorithm 2.3: The Arnoldi process with CGS

set v1 =
r0

‖r0‖ ,

for n = 1, 2, . . . , m − 1 do:
hi,n = (vi, Avn), i = 1, 2, . . . , n,

ṽn+1 = Avn −
n∑

i=1

hi,nvi,(2.9)

hn+1,n = ‖ṽn+1‖,
vn+1 =

ṽn+1

hn+1,n
.

end

It is readily shown that Algorithm 2.3 generates a vector sequence v1, . . . ,vm such that

(vi, vj) = δij ,

where Km(A, r0) = span{v1, . . . ,vm}, and δij denotes the Kronecker delta.

9

To produce more accurate orthonormal basis, the following modified Gram-Schmidt
(MGS) is often used:

Algorithm 2.4: The Arnoldi process with MGS

set v1 =
r0

‖r0‖ ,

for n = 1, 2, . . . , m − 1 do:
t = Avn,

for i = 1, 2, . . . , n do:
hi,n = (vi, t),
t = t − hi,nvi,

end
hn+1,n = ‖t‖,
vn+1 =

t

hn+1,n
.

end

From the previous section, we can expect that the Arnoldi process with MGS is superior
to the one with CGS. Actually, we can see from Fig. 2.2 that the Arnoldi process with
MGS is the best of four orthogonalization processes, where we used the Hilbert matrix and
chose r0 = (1, . . . , 1)T to run Algorithm 2.3 and Algorithm 2.4, we also applied CGS and
MGS to the vector sequence r0, Ar0, . . . , A

m−1r0. If we need more accurate basis of the

-16

-14

-12

-10

-8

-6

-4

-2

0

2

4

6

2 4 6 8 10 12 14

’CGS’
’MGS’

’Arnoldi_CGS’
’Arnoldi_MGS’

log
10

 o
f t

he
 re

sid
ua

l m
at

rix
 2

-n
or

m

Order of matrix

Figure 2.2: Comparison of CGS, MGS, Arnoldi with CGS, and Arnoldi with MGS.

Krylov subspace, we prefer to use the Arnoldi process with Householder reflection suggested
by Walker [92] or the Arnoldi process with reorthogonalization technique, e.g., [87, p.30]
that is based on the Gram-Schmidt with reorthogonalization technique [20]; however, these
algorithms cost about twice as much as the original one.

The Arnoldi process can be expressed in matrix form. This form will give us further
understanding of the algorithm. Let Vn be the N × n matrix whose columns are the first
n orthonormal system, i.e.,

Vn = [v1, v2, . . . ,vn], V H
n Vn = In,

10

and Hn+1,n be (n + 1) × n Hessenberg matrix with entries hi,j = 0 for i > j + 1, and Hn

be n × n Hessenberg matrix:

Hn+1,n =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

h1,1 h1,2 · · · h1,n−1 h1,n

h2,1 h2,2 · · · h2,n−1 h2,n

.
...

...
.

...
hn,n−1 hn,n

hn+1,n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, Hn =

⎛
⎜⎜⎜⎜⎜⎜⎝

h1,1 h1,2 · · · h1,n−1 h1,n

h2,1 h2,2 · · · h2,n−1 h2,n

.
...

...
.

...
hn,n−1 hn,n

⎞
⎟⎟⎟⎟⎟⎟⎠.

Then, from Algorithm 2.3, we have

AVn = Vn+1Hn+1,n = VnHn + hn+1,nvn+1e
T
n ,

where en = (0, 0, . . . , 1)T ∈ Rn. From the above expression and V H
n Vn = In, we readily

obtain the formula Hn = V H
n AVn.

2.2.2 The bi-Lanczos process

In the previous section, we saw useful orthonormalization processes of Km(A, r0); however,
their required computational costs and memory storage grow linearly. This fact can be a
bottleneck for computing orthonormal basis of Km(A, r0) with a large number of dimen-
sions. The bi-Lanczos process was designed for obtaining bi-orthogonal basis of Km(A, r0)
with short-term recurrences. Although the process does not generate orthonormal basis
vectors, it plays an important role in solving linear systems with low memory requirement.
The algorithm is given below.

Algorithm 2.5: The bi-Lanczos process

choose r∗
0 such that (r∗

0, r0) �= 0,

set β0 = γ0 = 0, v0 = w0 = 0,

set v1 = r0/‖r0‖, w1 = r∗
0/(r∗

0, v1),
for n = 1, 2, . . . , m − 1 do:

αn = (wn, Avn),
ṽn+1 = Avn − αnvn − βn−1vn−1,

w̃n+1 = AHwn − ᾱnwn − γn−1wn−1,

γn = ‖ṽn+1‖,
vn+1 = ṽn+1/γn,

βn = (w̃n+1, vn+1),
wn+1 = w̃n+1/β̄n.

end

If breakdown does not occur, the above algorithm generates bi-orthogonal basis of the two
Krylov subspaces such that

(wi, vj) = δij ,

11

where Km(A, r0) = span{v1, . . . ,vm} and Km(AH, r∗
0) = span{w1, . . . ,wm}.

Similar to the Arnoldi process, the bi-Lanczos process can be also written in matrix form.
Let Tn+1,n be the (n + 1) × n tridiagonal matrix whose entries are recurrence coefficients
of the bi-Lanczos process, i.e.,

Tn+1,n =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

α1 β1

γ1 α2
. . .

. βn−1

γn−1 αn

γn

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, Tn =

⎛
⎜⎜⎜⎜⎝

α1 β1

γ1 α2
. . .

. βn−1

γn−1 αn

⎞
⎟⎟⎟⎟⎠.

Then from the bi-Lanczos process, we have

AVn = Vn+1Tn+1,n = VnTn + γnvn+1e
T
n ,(2.10)

AHWn = Wn+1T
H
n+1,n = WnTH

n + β̄nwn+1e
T
n .

From the above expression and WH
n Vn = In, we readily obtain the formula Tn = WH

n AVn.

2.2.3 The complex symmetric Lanczos process

The complex symmetric Lanczos process is a special case for the above bi-Lanczos process
when the coefficient matrix is complex symmetric, i.e. A = AT �= AH. If A is complex
symmetric, we can readily derive the process from Algorithm 2.5 by setting r∗

0 = r0.

Algorithm 2.6: The complex symmetric Lanczos process

set β0 = 0, v0 = 0,

set v1 = r0/(r̄0, r0)1/2,

for n = 1, 2, . . . , m − 1 do:
αn = (v̄n, Avn),
ṽn+1 = Avn − αnvn − βn−1vn−1,

βn = (¯̃vn+1, ṽn+1)1/2,

vn+1 = ṽn+1/βn.

end

From the above algorithm, we see that it is very similar to the Lanczos process. If breakdown
does not occur, the above algorithm generates conjugate orthogonal basis of the Krylov
subspace such that

(v̄i, vj) = δij ,

where Km(A, r0) = span{v1, . . . ,vm}.
Similar to the Arnoldi process and the bi-Lanczos process, Algorithm 2.6 can be also

written in matrix form. Let Tn+1,n be the (n + 1)× n tridiagonal matrix whose entries are

12

recurrence coefficients of the complex symmetric Lanczos process, i.e.,

Tn+1,n =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

α1 β1

β1 α2
. . .

. βn−1

βn−1 αn

βn

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, Tn =

⎛
⎜⎜⎜⎜⎝

α1 β1

β1 α2
. . .

. βn−1

βn−1 αn

⎞
⎟⎟⎟⎟⎠.

Then from Algorithm 2.6, we have

AVn = Vn+1Tn+1,n = VnTn + βnvn+1e
T
n .(2.11)

From the above, we see that Tn is also complex symmetric, i.e., Tn = TT
n �= TH

n .

2.2.4 The Lanczos process

The Lanczos process [56] is the Arnoldi process specialized to the case where A is Hermitian.
Since Hn is both Hermitian and Hessenberg, it is tridiagonal. This means that in the inner
loop of Arnoldi process (2.9), the summation from 1 to n can be replaced by n − 1 to
n. Therefore, instead of the (n + 1)-term recurrence at step n, the Lanczos process only
requires a three-term recurrence. As a result of this amazing property, each step of the
Lanczos process is much cheaper than the corresponding step of the Arnoldi process or the
bi-Lanczos process. The Lanczos process is written as follows:

Algorithm 2.7: The Lanczos process

set β0 = 0, v0 = 0,

set v1 = r0/(r0, r0)1/2,

for n = 1, 2, . . . , m − 1 do:
αn = (vn, Avn),
ṽn+1 = Avn − αnvn − βn−1vn−1,

βn = (ṽn+1, ṽn+1)1/2,

vn+1 = ṽn+1/βn.

end

We can readily derive the above algorithm from the Arnoldi process or the bi-Lanczos
process by setting r∗

0 = r0. If breakdown does not occur, the above algorithm generates
orthonormal basis of Kn(A, r0) such that

(vi, vj) = δij ,

where Km(A, r0) = span{v1, . . . ,vm}.
Similar to the Arnoldi process and the bi-Lanczos process, the Lanczos process can be

also written in matrix form. Let Tn+1,n be the (n+1)×n tridiagonal matrix whose entries

13

are recurrence coefficients of the Lanczos process, i.e.,

Tn+1,n =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

α1 β1

β1 α2
. . .

. βn−1

βn−1 αn

βn

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, Tn =

⎛
⎜⎜⎜⎜⎝

α1 β1

β1 α2
. . .

. βn−1

βn−1 αn

⎞
⎟⎟⎟⎟⎠.

Then from the Lanczos process, we have

AVn = Vn+1Tn+1,n = VnTn + βnvn+1e
T
n .(2.12)

From the above expression and V H
n Vn = In, we readily obtain the following formula:

Tn = V H
n AVn.(2.13)

We see that Tn is also Hermitian (more precisely, real symmetric). This process is widely
used for solving Hermitian linear systems.

2.3 Preconditioners

The convergence rate of iterative methods depends strongly on spectral property of the
coefficient matrix. It is therefore natural to try to transform the original system into one
having the same solution but more favorable spectral properties. If K is a nonsingular
matrix, the transformed linear system

K−1Ax = K−1b(2.14)

has the same solution as the original one. Hence, we can obtain the solution by applying
KS methods to the above system. The matrix K is called preconditioner and a good
preconditioner satisfies the following properties:

• K is close to A. More precisely, K−1A has a low degree minimal polynomial;

• K−1z is readily obtained for any vector z.

Left and Right preconditioning

If A is Hermitian positive definite (HPD), the transformed system (2.14) is not useful in
practice because of the fact that the matrix K−1A is not HPD any longer. Since the CG
method is an iterative method for HPD, an alternative way is to split the preconditioner
as K = K1K

H
1 and to transform the system as

K−1
1 AK−H

1 (KH
1 x) = K−1

1 b.

The above coefficient matrix K−1
1 AK−H

1 is obviously HPD. Hence, the CG method can be
applied. If the coefficient matrix A is non-Hermitian, the corresponding preconditioning is

K−1
1 AK−1

2 (K2x) = K−1
1 b,(2.15)

14

where K = K1K2. The above form is called left and right preconditioning. We will adopt
the form (2.15) when we use preconditioners. If we choose K1 = I, then we have

AK−1(Kx) = b.(2.16)

This preconditioing is referred to as right preconditioning. The right preconditioning is
used for GMRES and GCR described in Appendix B.

Here is one note that if K−1 and A are HPD, then CG can be applied to (2.14). Then,
since K−1A is HPD with respect to the inner product (p, q)K := (p, Kq), the resulting
algorithm still minimizes A-norm of the error over x0 +Kn(K−1A, K−1r0). Moreover, even
if K−1 is Hermitian but not positive definite, CG can be also applied. However, in this
case, CG does not minimize anything since (p, q)K is not a proper inner product.

2.3.1 Incomplete LU factorization

Many preconditioners have been proposed in the last few decades of the 20th century. Of
various preconditioners, most well-known ones fall in a category of incomplete factorizations
of the coefficient matrix. Incomplete factorizations can be given in the form of K = LU
(with nonsingular triangular matrices L and U).

One of the simplest incomplete factorizations is the D-ILU preconditioner that is pro-
posed by Pommerell [65]. The idea of this method is given as follows: first, split the
coefficient matrix into its diagonal, strictly lower triangular, and strictly upper triangular
parts as A = DA + LA + UA; second, use K = (D + LA)D−1(D + UA) as a preconditioner,
where D is determined by diag(K)=DA. Hence, only the computation of D is required.
The algorithm of D-ILU is described below.

Algorithm 2.8: D-ILU storing the inverses of the pivots:

let S be the nonzero set {(i, j)|ai,j �= 0} ,

for i = 1, 2, . . . , n do:
di,i = ai,i,

end
for i = 1, 2, . . . , n do:

di,i = 1/di,i,

for j = i + 1, i + 2, . . . , n do:
if (i, j) ∈ S and (j, i) ∈ S then
dj,j = dj,j − aj,idi,iai,j .

end
end

The lower and upper matrices of the preconditioner have only nonzero element in the set
S, but this fact is not true in general for the preconditioner K itself, i.e., K is usually not
sparse but dense. Hence, this preconditioner is readily available in practice.

Since the D-ILU preconditioner explicitly contains the off-diagonal parts of the original
matrix, Eisenstat’s trick [30] can be used to give a more efficient implementation of the
preconditioned CG method.

One of the most well-known and powerful incomplete LU factorizations is given by
Meijerink and van der Vorst [59]. This factorization is referred to as ILU(0). The algorithm

15

is given below. S denotes an index set such that ai,j �= 0, i.e., S = {(i, j)|ai,j �= 0}.

Algorithm 2.9: ILU(0)

for i = 2, . . . , n do:
for k = 1, . . . , i − 1 and for (i, k) ∈ S do:

ai,k = ai,k/ak,k,

for j = k + 1, . . . , n and for (i, j) ∈ S do:
ai,j = ai,j − ai,kak,j .

end
end

end

By the above factorization, the number of nonzeros in the factorized matrix is the same
as that in the original matrix. Hence, if ILU(0) is applied to a sparse matrix, then it also
generates a sparse preconditioning matrix. This fact is important for saving memory. The
relationship between ILU(0) and D-ILU is given below.

Theorem 2.3.1 ILU(0) and D-ILU generate the same preconditioning matrix if the ma-
trix graph contains no triangles.

To generate a better preconditioning matrix, ILU(p) [59] is also widely used at the cost
of memory, where p denotes the level of fill-in. The definition of the level is given as follows:
original entries have level zero, original zeros have level ∞, and a fill-in in position (i, j)
has level defined by

Levelij = min
1≤k≤min{i,j}

{Levelik + Levelkj + 1}.(2.17)

The algorithm is shown in [70, p.300].
Another successful variant of ILU is an ILU with threshold approach proposed by Saad

[69]. This factorization is referred to as ILUT (p, τ), where p is used for saving memory
and τ is a criterion for dropping elements.

2.4 Krylov subspace methods for Hermitian linear systems

In this section, we give brief derivations of the algorithms of CG, CR, and MINRES. CG is
widely used for solving Hermitian positive definite linear systems. On the other hand, CR
and MINRES are used for solving Hermitian indefinite linear systems. Although MINRES
and CR are mathematically equivalent, MINRES is numerically robuster than CR, and CR
is easier to be implemented than MINRES.

2.4.1 The CG method

In this subsection, based on the Lanczos process, let us consider a derivation of the CG
method from the Krylov subspace condition (2.1) and Ritz-Galerkin approach (2.3). First,
substituting the Lanczos basis into the Krylov subspace condition, we have

zn = Vnyn, yn ∈ Cn.

16

From (2.2), it follows that

rn = r0 − AVnyn.(2.18)

Since V H
n rn = 0 by Ritz-Galerkin approach (2.3), it follows from (2.13) that we obtain

yn = ‖r0‖T−1
n e1,

where e1 = (1, 0, . . . , 0)T ∈ Cn. Then, from (2.12), the residual vector can be written by

rn = r0 − (VnTn + βnvn+1e
T
n)yn

= r0 − VnTnT−1
n ‖r0‖e1 − βnvn+1e

T
nyn

= −βn(yn, en)vn+1.(2.19)

It is clear from the above that the residual vectors are orthogonal,

(ri, rj) = 0 for i �= j.(2.20)

Substituting (2.19) for ṽn of Algorithm 2.7, we obtain the algorithm of the CG method.
For details of the derivation, see Appendix B.

Algorithm 2.10: CG method

x0 is an initial guess, r0 = b − Ax0, β−1 = 0,

for n = 0, 1, . . . ,until ‖rn‖ ≤ ε‖b‖ do:
pn = rn + βn−1pn−1,

αn =
(rn, rn)

(pn, Apn)
,

xn+1 = xn + αnpn,

rn+1 = rn − αnApn,

βn =
(rn+1, rn+1)

(rn, rn)
.

end

From (2.20), the nth residual vector rn should be zero in at most N steps. The convergence
of CG is theoretically well known. See, e, g, [48]. We also discuss the convergence rate of
CG later.

Looking at Algorithm 2.10, we see that the residual vector rn and the auxiliary vector pn

can be expressed by using two polynomials Rn and Pn.

rn = Rn(A)r0, pn = Pn(A)r0,

where Rn(λ) is called the Lanczos polynomial [56] which satisfies the following three-term
recurrences:

R0(λ) = 1,(2.21)
R1(λ) = (1 − α0λ)R0(λ),(2.22)

Rn(λ) = (1 +
βn−2

αn−2
αn−1 − αn−1λ)Rn−1(λ)(2.23)

−βn−2

αn−2
αn−1Rn−2(λ), n = 2, 3, . . .

17

and Rn, Pn are written by the following two-term recurrences:

R0(λ) = 1, P0(λ) = 1,(2.24)
Rn(λ) = Rn−1(λ) − αn−1λPn−1(λ),(2.25)
Pn(λ) = Rn(λ) + βn−1Pn−1(λ), n = 1, 2, . . .(2.26)

Note that there are other approaches to derive the CG method from the following
minimizations:

rn = min
xn∈x0+Kn(A,r0)

‖b − Axn‖A−1

= min
xn∈x0+Kn(A,r0)

‖en‖A,(2.27)

where en denotes the error en = x − xn. For details, see [40].
The convergence rate of the CG method is estimated by the following theorem:

Theorem 2.4.1 Let en be the error at step n of the CG method applied to the Hermitian
positive definite system Ax = b. Then, the A-norm of the nth error satisfies

‖en‖A ≤ 2
(√

κ − 1√
κ + 1

)n

‖e0‖A,

where κ denotes the 2-norm condition number of A.

Proof. See [49, pp. 51-52]. �

From the above theorem, we see that the condition number of A depends directly on
the rate of the convergence. Moreover, we can see that

√
κ − 1√
κ + 1

∼ 1 − 2√
κ

as κ → ∞, and it implies that if κ is large, the convergence to a specified tolerance can
be expected in O(

√
κ) iterations. Note that this is only an upper bound. The convergence

may be faster for special right-hand sides or if the spectrum is clustered.

2.4.2 The CR method

In this subsection, we derive the Conjugate Residual (CR) method from the CG method
obtained in the previous section. Let A be Hermitian positive definite, then there exists
a square root of A: the Cholesky factorization of A is obtained as LHL and L can be
decomposed as UΣV H by using singular value decomposition. Then, we have

A = LHL = (V ΣUH)(UΣV H) = V Σ2V H = (V ΣV H)(V ΣV H) = A
1
2 A

1
2 .

Thus, the square root of A is A
1
2 = V ΣV H. Here, we show that if A is Hermitian positive

definite, then the algorithm of CR is obtained by applying CG to the following systems:

Ax̃ = A
1
2 b, x̃ = A

1
2 x.(2.28)

18

It follows from the algorithm of CG that

p̃n = r̃n + βn−1p̃n−1,

αn =
(r̃n, r̃n)

(p̃n, Ap̃n)
,

x̃n+1 = x̃n + αnp̃n,

r̃n+1 = r̃n − αnAp̃n,

βn =
(r̃n+1, r̃n+1)

(r̃n, r̃n)
.

The residual vector of the original system Ax = b is rn = b − Axn, and then from (2.28)
we have r̃n = A

1
2 b − Ax̃n = A

1
2 (b − Axn) = A

1
2 rn. Substituting r̃n = A

1
2 rn, p̃n = A

1
2 pn,

and x̃n = A
1
2 xn into the above recurrences, we have the algorithm of CR.

Algorithm 2.11: CR method

x0 is an initial guess, r0 = b − Ax0, β−1 = 0,

for n = 0, 1, . . . ,until ‖rn‖ ≤ ε‖b‖ do:
pn = rn + βn−1pn−1,

(Apn = Arn + βn−1Apn−1,)

αn =
(rn, Arn)

(Apn, Apn)
,

xn+1 = xn + αnpn,

rn+1 = rn − αnApn,

βn =
(rn+1, Arn+1)

(rn, Arn)
.

end

By induction, it can be shown that the CR method generates iterates ri, pi that satisfy

(ri, Arj) = 0 for i �= j,(2.29)
(Api, Apj) = 0 for i �= j.(2.30)

This leads us to the fact that CR generates the nth approximate solution xn such that the 2-
norm of the corresponding residual vector is minimized over the affine space x0+Kn(A, r0),
i.e.,

‖rn‖ = min
xn∈x0+Kn(A,r0)

‖b − Axn‖.

As an equivalent approach, let us consider applying CGNR that is discussed in Appendix
B (Algorithm B.1) to the following system:

A
1
2 x̃ = b, x̃ = A

1
2 x.

Then, the CR method is obtained.

19

2.4.3 The MINRES method

The Minimal Residual (MINRES) method [62] is a useful algorithm for solving Hermitian
indefinite linear systems. This method generates xn that minimizes ‖b − Axn‖ over the
affine space x0 + Kn(A, r0). This can be achieved by using the Lanczos process. Here, we
give the derivation process of the MINRES method. Let Vn be the orthonormal basis of
Kn(A, r0). Then, since xn lies in the affine space x0 + Kn(A, r0), we have

xn = x0 + Vnyn, yn ∈ Cn.(2.31)

The corresponding residual vector is written as

rn = r0 − AVnyn.

From the matrix form of the Lanczos process, it follows that

rn = r0 − Vn+1Tn+1,nyn = Vn+1(βe1 − Tn+1,nyn),

where β := ‖r0‖. Hence, the 2-norm of the residual vector can be minimized by choosing
yn such that

yn := arg min
y∈Cn

‖βe1 − Tn+1,ny‖

By solving the above minimization problem using Givens rotations, we obtain the MINRES
method. For details of the above solution, see Appendix B.

Algorithm 2.12: MINRES method

x0 is an initial guess, r0 = b − Ax0,

set g = (‖r0‖, 0, . . . , 0)T, v1 = r0/‖r0‖,
for n = 1, 2, . . . do:
(Lanczos process)

αn = (vn, Avn),
ṽn+1 = Avn − αnvn − βn−1vn−1,

βn = (ṽn+1, ṽn+1)1/2,

vn+1 = ṽn+1/βn,

set tn−1,n = βn−1, tn,n = αn, tn+1,n = βn,

(Givens rotations)
for i = max{1, n − 2}, . . . , n − 1 do:(

ti,n
ti+1,n

)
=
(

ci si

−s̄i ci

)(
ti,n

ti+1,n

)
,

end

cn =
|tn,n|√

|tn,n|2 + |tn+1,n|2
,

s̄n =
tn+1,n

tn,n
cn,

tn,n = cntn,n + sntn+1,n,

tn+1,n = 0,(
gn

gn+1

)
=
(

cn sn

−s̄n cn

)(
gn

0

)
,

(Update xn)
pn = (vn − tn−2,npn−2 − tn−1,npn−1)/tn,n,

xn = xn−1 + gnpn,

(Check convergence)
if |gn+1|/‖b‖ ≤ ε, then stop.

end

From the derivation of MINRES, it is clear that MINRES generates the nth approximate
solution xn such that the 2-norm of the corresponding residual vector is minimized over
the affine space x0 + Kn(A, r0), i.e.,

‖rn‖ = min
xn∈x0+Kn(A,r0)

‖b − Axn‖.

Hence, in exact precision arithmetic MINRES and CR generate the same approximate
solutions.

20

2.5 Krylov subspace methods for complex symmetric linear
systems

In this section, we derive the algorithms of COCG and QMR SYM. COCG is a well-known
algorithm for solving complex symmetric linear systems. QMR SYM is also a useful solver
and it often gives smoother convergence behavior than COCG. The remarkable property
of these methods is that they require only one matrix-vector multiplication per iteration.

2.5.1 The COCG method

In this subsection, we discuss a way to obtain COCG. Let xn be the nth approximate
solution. Then, the corresponding nth residual vector rn(= b−Axn) and search direction
pn are given by the following coupled two-term recurrences:

r0 = b − Ax0, p0 = r0,(2.32)
rn = rn−1 − αn−1Apn−1,(2.33)
pn = rn + βn−1pn−1, n = 1, 2, . . .(2.34)

The computational formulas of αn−1 and βn−1 in the recurrences (2.33)-(2.34) are deter-
mined by the following orthogonality conditions:

rn ⊥ Kn(Ā, r̄0) and Apn ⊥ Kn(Ā, r̄0).(2.35)

Then, we obtain the COCG method. For details of the derivation, see Appendix B.

Algorithm 2.13: COCG method

x0 is an initial guess, r0 = b − Ax0,

set p−1 = 0, β−1 = 0,

for n = 0, 1, . . . ,until ‖rn‖ ≤ ε‖b‖ do:
pn = rn + βn−1pn−1,

αn =
(r̄n, Arn)
(p̄n, Apn)

,

xn+1 = xn + αnpn,

rn+1 = rn − αnApn,

βn =
(r̄n+1, rn+1)

(r̄n, rn)
.

end

If breakdown does not occur, COCG residuals satisfy (ri, rj) = 0 for i �= j. From the above
algorithm, we see that if the coefficient matrix is real symmetric, then COCG is equivalent
to CG.

2.5.2 The QMR SYM method

The QMR SYM method [38] (named by van der Vorst [87, p.112]) is also useful for solving
complex symmetric linear systems, and it can be derived from the complex symmetric
Lanczos process described in section 2.2.3. Here, we give the derivation process of the

21

QMR SYM method. Let Vn be the conjugate orthonormal basis of Kn(A, r0). Then, since
xn lies in the affine space x0 + Kn(A, r0), we have

xn = x0 + Vnyn, yn ∈ Cn.(2.36)

The corresponding residual vector is rn = r0 − AVnyn. From the complex symmetric
Lanczos process, it follows that rn = r0 − Vn+1Tn+1,nyn = Vn+1(βe1 − Tn+1,nyn) with
β := ‖r0‖. We see that the above derivation process is very similar to the one of MINRES;
however, in this case if we choose yn such that the norm of the residual is minimized, then
it may lead to large amount of computational costs. Instead, QMR SYM chooses yn such
that

yn := arg min
y∈Cn

‖βe1 − Tn+1,ny‖.(2.37)

Here, we note that if Vn satisfies the relation V H
n Vn = In, then the above choice leads

to minimization of the norm of the residuals. Unfortunately, when matrix A is complex
symmetric, Vn does not satisfy the relation V H

n Vn = In except some special cases. One of
the special cases is given in [38], i.e., matrix A has the form

A = B + iσI, B = BT ∈ RN×N , σ ∈ R.

To achieve the minimization (2.37), Givens rotations described in Appendix B (MINRES)
play an important role. Multiplying βe1−Tn+1,ny by Qn = Gn · · ·G1 such that QH

n Qn = In

and QnTn+1,n = Rn, we have

min
y∈Cn

‖βe1 − Tn+1,ny‖ = min
y∈Cn

‖gn − Rny‖, where gn = βQne1.

Thus, we have yn = R−1
n gn. From which and (2.36), we obtain the following approximate

solution xn = x0 + VnR−1
n gn. Similar to MINRES, introducing Pn := VnR−1

n gives a three-
term recurrence relation. Then, we have more practical formula of xn:

xi = xi−1 + g
(i)
i pi, i = 1, . . . , n.

The complete algorithm of QMR SYM is described as follows:

Algorithm 2.14: QMR SYM method

x0 is an initial guess, r0 = b − Ax0,

set g = (‖r0‖, 0, . . . , 0)T, v1 = r0/‖r0‖,
for n = 1, 2, . . . do:
(Complex symmetric Lanczos process)

αn = (vn, Avn),
ṽn+1 = Avn − αnvn − βn−1vn−1,

βn = (ṽn+1, ṽn+1)1/2,

vn+1 = ṽn+1/βn,

set tn−1,n = βn−1, tn,n = αn, tn+1,n = βn,

(Givens rotations)

for i = max{1, n − 2}, . . . , n − 1 do:(
ti,n

ti+1,n

)
=
(

ci si

−s̄i ci

)(
ti,n

ti+1,n

)
,

end

cn =
|tn,n|√

|tn,n|2 + |tn+1,n|2
,

s̄n =
tn+1,n

tn,n
cn,

tn,n = cntn,n + sntn+1,n,

tn+1,n = 0,

22

(
gn

gn+1

)
=
(

cn sn

−s̄n cn

)(
gn

0

)
,

(Update xn)
pn = (vn − tn−2,npn−2 − tn−1,npn−1)/tn,n,

xn = xn−1 + gnpn,

(Check convergence)

Apn = (Avn − tn−2,nApn−2

−tn−1,nApn−1)/tn,n,

rn = rn−1 − gnApn,

if ‖rn‖/‖b‖ ≤ ε, then stop.

end

2.6 Krylov subspace methods for non-Hermitian linear sys-
tems

In this section, we derive Bi-CG and QMR from the bi-Lanczos process and Petrov-Galerkin
approach.

2.6.1 The QMR method

In this subsection, we describe the idea of Quasi-Minimal Residual (QMR) method [41]. The
derivation process of QMR is almost the same as that of QMR SYM. The main difference
is not to use the complex symmetric Lanczos process but the bi-Lanczos process. Let Vn

be the bi-orthogonal basis of Kn(A, r0) via the bi-Lanczos process given in Algorithm 2.5.
Then, since xn lies in the affine space x0 + Kn(A, r0), we have

xn = x0 + Vnyn, yn ∈ Cn.

Then, the corresponding residual vector is obtained below.

rn = r0 − AVnyn.

From the matrix form of the bi-Lanczos process (2.10), it follows that

rn = r0 − Vn+1Tn+1,nyn = Vn+1(βe1 − Tn+1,nyn),

where β := ‖r0‖. From here we see that the above derivation process is very similar to the
one of MINRES; however, in this case, if we choose yn such that the norm of the residual
is minimized, then it leads to large amount of computational costs. Instead, QMR chooses
yn such that

yn := arg min
y∈Cn

‖βe1 − Tn+1,ny‖.(2.38)

We call yn quasi-residual vector. This can be solved by Givens rotations. The algorithm
of QMR is written as follows:

Algorithm 2.15: QMR method

x0 is an initial guess, r0 = b − Ax0,

set g = (‖r0‖, 0, . . . , 0)T, v1 = r0/‖r0‖,
for n = 1, 2, . . . do:
(Bi-Lanczos process)

αn = (wn, Avn),

ṽn+1 = Avn − αnvn − βn−1vn−1,

w̃n+1 = AHwn − ᾱnwn − γn−1wn−1,

γn = ‖ṽn+1‖,
vn+1 = ṽn+1/γn,

23

βn = (w̃n+1, vn+1),
wn+1 = w̄n+1/β̄n,

(Givens rotations)
for i = max{1, n − 2}, . . . , n − 1 do:(

ti,n
ti+1,n

)
=
(

ci si

−s̄i ci

)(
ti,n

ti+1,n,

)
end

cn =
|tn,n|√

|tn,n|2 + |tn+1,n|2
,

s̄n =
tn+1,n

tn,n
cn,

tn,n = cntn,n + sntn+1,n,

tn+1,n = 0,(
gn

gn+1

)
=
(

cn sn

−s̄n cn

)(
gn

0

)
,

(Update xn)
pn = (vn − tn−2,npn−2 − tn−1,npn−1)/tn,n,

xn = xn−1 + gnpn,

(Check convergence)
if |gn+1|/‖b‖ ≤ ε, then stop.

end

The above stopping criterion is clearly not equivalent to the others that we have seen
before because of the relation ‖rn‖ ≤ ‖Vn+1‖ · |gn| =

√
n + 1 · |gn|. However, in many cases,

|gn| and ‖rn‖ are of the same order of magnitude. If we need to adopt the conventional
stopping criterion, use the following recurrences:

(Check convergence)
Apn = (Avn − tn−2,nApn−2 − tn−1,nApn−1)/tn,n,

rn = rn−1 − gnApn,

if ‖rn‖/‖b‖ ≤ ε, then stop.

This leads to additional computational costs and memory.
Finally, here is one note that QMR has the possibility of breakdown, division by zero,

underling the bi-Lanczos process. In finite precision arithmetic, such breakdown is very
rare; however, near breakdown may occur, and this causes numerical instability. Hence,
to avoid such problem, QMR in [41] uses the look-ahead Lanczos process. The look-ahead
Lanczos process was first proposed by Taylor [83] and Parlett et al. [64].

2.6.2 The Bi-CG method

First of all, let us consider an ideal Krylov subspace method for solving non-Hermitian
linear systems. An ideal method such as the CG method has two characteristic properties:

• It is based on Ritz-Galerkin approach (2.3) or minimal residual approach (2.5);

• Residual vectors can be updated by short-term recurrences.

Without some exceptions, if A is non-Hermitian, it is shown by Faber and Manteuffel that
ideal iterative methods with both of the above two properties can not be obtained. See
[33, 34].

Theorem 2.6.1 Ideal iterative methods can be obtained if the coefficient matrix A has the
following ideal structure:

A = αT + βI,

where T = TH, α, β ∈ C, and I denotes a unit matrix.

24

The above structure of the matrix for ideal iterative methods has been extended to the
following structure [2]:

A = αT + βI,

where α, β ∈ C and B is Hermitian such that TB = (TB)H. Due to the above reason,
iterative methods for solving non-Hermitian linear systems are designed by adopting one
of the two ideal properties, and the other one has to be an alternative. Now, we introduce
an iterative method based on short recurrences and Petrov-Galerkin condition instead of
Ritz-Galerkin condition.

The Conjugate Gradient method is not suitable for non-Hermitian linear systems be-
cause the residual vectors can not be made orthogonal by short-term recurrences. Therefore,
the Bi-CG method takes another approach. It is based on Krylov subspace condition (2.1),
three-term recurrences, and the Petrov-Galerkin approach (2.4). For details of the deriva-
tion, see Appendix B. We give the algorithm of Bi-CG below.

Algorithm 2.16: Bi-CG method

x0 is an initial guess, r0 = b − Ax0, β−1 = 0,

r∗
0 is an arbitrary vector, such that (r∗

0, r0) �= 0, e.g., r∗
0 = r0,

for n = 0, 1, . . . ,until ‖rn‖ ≤ ε‖b‖ do:
pn = rn + βn−1pn−1, p∗

n = r∗
n + β̄n−1p

∗
n−1,

αn =
(r∗

n, rn)
(p∗

n, Apn)
,

xn+1 = xn + αnpn,

rn+1 = rn − αnApn, r∗
n+1 = r∗

n − ᾱnAHp∗
n,

βn =
(r∗

n+1, rn+1)
(r∗

n, rn)
.

end

If breakdown does not occur, residual vector sequences r0, r1, . . . , rn and r∗
0, r

∗
1, . . . , r

∗
n

satisfy the bi-orthogonality property:

(r∗
i , rj) = 0 for i �= j.(2.39)

The Bi-CG method can be described in another form by using two polynomials Rn and Pn

which satisfy three-term recurrences (2.21)-(2.23) and two-term recurrences (2.24)-(2.26).

rn = Rn(A)r0, pn = Pn(A)r0,

r∗
n = R̄n(AT)r∗

0, p∗
n = P̄n(AT)r∗

0.

Since the Bi-CG algorithm has possibility of breakdown, QMR with look-ahead strategy
is preferred to use in practice. QMR is better than Bi-CR in that QMR can avoid most of
breakdowns and that the residual 2-norm of QMR is often less than that of Bi-CG at the
same iteration step. In exact arithmetic, the Bi-CG residual rn and the quasi residual of
QMR (2.38) are related as

‖rn‖ =
‖yn‖√

1 − (‖yn‖/‖yn−1‖)2
.

25

This result is given by Cullum and Greenbaum [17].
If the breakdown does not occur, it follows from (2.39) that the Bi-CG method converges

in at most N iteration steps. The convergence has been proved under some conditions
[4, 41]. The Bi-CG method has two shortcomings. One is that the Bi-CG method needs to
compute the product of AH and vectors. The other one is that r∗

n is not directly used while
r∗

n converges zero as well as rn. Since the Bi-CG method may lead to a rather irregular
convergence behavior, smoothing algorithms have been proposed such as the generalized
conjugate gradient method [93] and the composite step bi-conjugate gradient method [4].

2.7 Product-type Krylov subspace methods based on Bi-CG

In this section, let us introduce the product-type methods which overcome the drawbacks
of Bi-CG. The IDR method [95] by Wesseling and Sonneveld has been proposed earlier.
However, since the IDR method may suffer from severe cancellation, it was not given
further attention. Nine years later, the CGS method [81] was proposed by Sonneveld,
which computes the square of the Bi-CG polynomials without requiring AH. When Bi-CG
converges, CGS often converges in the half of the number of iterations. However, CGS
often shows more irregular convergence behavior than Bi-CG. To avoid such convergence
behavior, the Bi-CGSTAB method was proposed by van der Vorst [86]. It is shown by many
numerical examples that Bi-CGSTAB often gives much smoother convergence behavior than
CGS. In terms of exact precision arithmetic, IDR and Bi-CGSTAB are mathematically
equivalent. Hence, we can see that it is quite important to develop numerically robust
algorithm. Recently, CGS, Bi-CGSTAB, and Bi-CGSTAB2 were generalized by Zhang. By
using his framework, the GPBi-CG method has been proposed [97]. In the next subsection,
we give the framework of Zhang’s product type methods.

2.7.1 Definition of the product-type methods

The nth residual vector of Bi-CG is characterized by the product of the n degree Lanczos
polynomial Rn(λ) and the initial residual vector:

rBiCG
n = Rn(A)r0.

In the product-type methods, the convergence behavior can be improved by the product of
a polynomial of degree n and the nth Bi-CG residual:

rn = Hn(A)rBiCG
n = Hn(A)Rn(A)r0.

To improve the convergence behavior of Bi-CG, the residual vector must meet the following
requirements:

(1) The recurrence for computing the residual vectors of the product-type method must
be given by the determination of Hn.

(2) Two parameters αn, βn in the polynomial Rn have to be determined by the Petrov-
Galerkin condition (2.4).

(3) Hn needs to have short-term recurrences for low computational costs per iteration
and low memory requirements.

26

(4) The choice of parameters in Hn is important to accelerate and stabilize the the con-
vergence of Bi-CG.

Restructuring of residual polynomials

Similar to the Lanczos polynomials (2.21)-(2.23), let us introduce three-term recurrences:

H0(λ) := 1,(2.40)
H1(λ) := (1 − ζ0λ)H0(λ),(2.41)
Hn(λ) := (1 + ηn−1 − ζn−1λ)Hn−1(λ) − ηn−1Hn−2(λ), n = 2, 3, . . .(2.42)

Here, we note that the choice ζn = αn, ηn = βn−1

αn−1
αn leads to the relation Hn = Rn. Hence,

Hn can be regarded as a natural generalization of the polynomial Rn. Now, we transform
the above three-term recurrences into a coupled two-term ones. Since the recurrence (2.42)
is of the form Hn(λ) − Hn−1(λ) = −ζn−1λHn−1(λ) + ηn−1(Hn−1(λ) − Hn−2(λ)), by using
the definition

Gn−1(λ) :=
Hn−1(λ) − Hn(λ)

λ
,

we obtain the following coupled two-term recurrences:

H0(λ) = 1, G0(λ) = ζ0,

Hn(λ) = Hn−1(λ) − λGn−1(λ),(2.43)
Gn(λ) = ζnHn(λ) + ηnGn−1(λ), n = 1, 2, . . .(2.44)

By the above polynomial, we can derive several well-known iterative methods from
the choice of the two parameters ζn, ηn such as CGS, Bi-CGSTAB, Bi-CGSTAB2, and
GPBi-CG. Let us show the relationships in Table 2.4.

Table 2.4. The choice for the product-type methods.

CGS ζn = αn, ηn =
βn−1

αn−1
αn ⇐⇒ Hn = Rn

Bi-CGSTAB ζn = arg min
ζn∈C

‖rn+1‖, ηn = 0

Bi-CGSTAB2 ζn, ηn = arg min
ζn,ηn∈C

‖rn+1‖ (ηn = 0 at even iterations)

GPBi-CG ζn, ηn = arg min
ζn,ηn∈C

‖rn+1‖

2.7.2 Derivations of CGS, Bi-CGSTAB, and GPBi-CG

The choice for CGS

If we choose ζn = αn and ηn = βn−1

αn−1
αn in recurrence relations (2.43) and (2.44). Then, the

polynomials Hn and Gn become the Lanczos polynomial:

Hn(λ) = Rn(λ),
Gn(λ) = αnPn(λ).

27

This leads to the algorithm of CGS given below.

Algorithm 2.17: CGS method

x0 is an initial guess, r0 = b − Ax0, β−1 = 0,

r∗
0 is an arbitrary vector, such that (r∗

0, r0) �= 0, e.g., r∗
0 = r0,

for n = 0, 1, . . . ,until ‖rn‖ ≤ ε‖b‖ do:
pn = rn + βn−1zn−1,

un = pn + βn−1(zn−1 + βn−1un−1),

αn =
(r∗

0, rn)
(r∗

0, Aun)
,

zn = pn − αnAun,

xn+1 = xn + αn(pn + zn),
rn+1 = rn − αnA(pn + zn),

βn =
(r∗

0, rn+1)
(r∗

0, rn)
.

end

The choice for Bi-CGSTAB

In this subsection, we describe the choice for Bi-CGSTAB. If we choose ηn = 0, and ζn

such that the 2-norm of rn+1 is locally minimized, more precisely, it is determined by the
following orthogonalization:

rn+1 ⊥ Atn.

Then, Bi-CGSTAB is obtained, which has the simplest recurrences of other product-type
Krylov subspace methods.

Algorithm 2.18: Bi-CGSTAB method

x0 is an initial guess, r0 = b − Ax0, β−1 = 0,

r∗
0 is an arbitrary vector, such that (r∗

0, r0) �= 0, e.g., r∗
0 = r0,

for n = 0, 1, . . . ,until ‖rn‖ ≤ ε‖b‖ do:
pn = rn + βn−1(pn−1 − ζn−1Apn−1),

αn =
(r∗

0, rn)
(r∗

0, Apn)
,

tn = rn − αnApn,

ζn =
(Atn, tn)

(Atn, Atn)
,

xn+1 = xn + αnpn + ζntn,

rn+1 = tn − ζnAtn,

βn =
αn

ζn
· (r∗

0, rn+1)
(r∗

0, rn)
.

end

28

The choice for GPBi-CG

In this subsection, we describe the choice for GPBi-CG. If we choose ζn and η such that the
2-norm of rn+1 is locally minimized, more precisely, the two parameters are determined by
the following orthogonalization:

rn+1 ⊥ span{Atn, yn}.

Then, the algorithm of GPBi-CG is obtained as follows:

Algorithm 2.19: GPBi-CG method

x0 is an initial guess, r0 = b − Ax0, t−1 = w−1 = 0, β−1 = 0,

r∗
0 is an arbitrary vector, such that (r∗

0, r0) �= 0, e.g., r∗
0 = r0,

for n = 0, 1, . . . ,until ‖rn‖ ≤ ε‖b‖ do:
pn = rn + βn−1(pn−1 − un−1),

αn =
(r∗

0, rn)
(r∗

0, Apn)
,

yn = tn−1 − rn − αnwn−1 + αnApn,

tn = rn − αnApn,

ζn =
(yn, yn)(Atn, tn) − (yn, tn)(Atn, yn)

(Atn, Atn)(yn, yn) − (yn, Atn)(Atn, yn)
,

ηn =
(Atn, Atn)(yn, tn) − (yn, Atn)(Atn, tn)
(Atn, Atn)(yn, yn) − (yn, Atn)(Atn, yn)

,

(if n = 0, then ζn =
(Atn, tn)

(Atn, Atn)
, ηn = 0)

un = ζnApn + ηn(tn−1 − rn + βn−1un−1),
zn = ζnrn + ηnzn−1 − αnun,

xn+1 = xn + αnpn + zn,

rn+1 = tn − ηnyn − ζnAtn,

βn =
αn

ζn
· (r∗

0, rn+1)
(r∗

0, rn)
,

wn = Atn + βnApn.

end

Since Zhang’s framework includes the previous product-type methods, it admits also hybrid
variants in which one can shift from one of them to another, e.g. CGS to BiCGSTAB, at
some iteration steps. Even though BiCGSTAB(�) does not fall in this framework, it is also
practical and useful for recent scientific computing. However, the optimal choice for � is an
open problem.

So far, we have seen some important Krylov subspace methods and described these
ideas. However, we have not described some important methods and preconditioners such
as the product type methods based on QMR and flexible preconditioner. For details of the
Krylov subspace methods and preconditioners. See Freund et al. [40], Golub & van der
Vorst [47], Gutknecht [52], Saad & van der Vorst [72].

29

Chapter 3

Bi-CR: a biconjugate residual
method

3.1 Introduction

CG, MINRES, and CR given in the previous chapter have been extended to non-Hermitian
linear systems. FOM is an extension of CG. GMRES and GCR (given in Appendix B) are
extensions of MINRES and CR respectively. There is a similarity among FOM, GMRES,
and GCR in that they are based on the Arnoldi process.

On the other hand, based on the bi-Lanczos process, CG was extended to non-Hermitian
linear systems. The algorithm is known as Bi-CG. Similarly, in this chapter, based on a
bi-Lanczos like process, CR is extended to non-Hermitian linear systems.

The chapter is organized as follows: in the next section, we first describe a simple
derivation of Bi-CG. Then, based on the derivation, we extend CR to nonsymmetric linear
systems. In §3.3, we discuss some properties of the extended algorithm, and we give other
derivations. In §3.4, we report some numerical experiments. Finally, we present conclusions
and ideas for future work in §3.5.

3.2 An extension of CR without loss of short-term recur-
rence property

In this section, we describe one of the simplest derivations of Bi-CG, and then CR is
extended to nonsymmetric linear systems by analogously using this derivation process.

3.2.1 H. A. van der Vorst’s derivation of Bi-CG

The Bi-CG method is a Krylov subspace method for solving nonsymmetric linear systems

Ax = b,(3.1)

where A is an N × N real nonsymmetric matrix and b is an N -vector. The algorithm of
Bi-CG is well known, and there are several ways to obtain it. Recently, one of the simplest
derivations has been given by H. A. van der Vorst [87, pp.97-98], which was inspired by
[54]. In this subsection, we give the details of his derivation.

30

First, using (3.1) and a dual linear system ATx∗ = b∗, we consider the following 2N×2N
symmetric linear system:[

O A
AT O

] [
x∗

x

]
=

[
b
b∗

]
, or Ãx̃ = b̃.(3.2)

If we apply the algorithm of CG with the preconditioner

M̃ =

[
O I
I O

]
, I : identity matrix,(3.3)

to (3.2), then the resulting algorithm at the nth iteration step can be written as

p̃CG
n = M̃−1r̃CG

n + βn−1p̃
CG
n−1,

αn =
(M̃−1r̃CG

n , r̃CG
n)

(p̃CG
n , Ãp̃CG

n)
,

x̃CG
n+1 = x̃CG

n + αnp̃CG
n ,

r̃CG
n+1 = r̃CG

n − αnÃp̃CG
n ,

βn =
(M̃−1r̃CG

n+1, r̃
CG
n+1)

(M̃−1r̃CG
n , r̃CG

n)
.

Substituting M̃−1 = M̃ of (3.3) and the vectors

x̃CG
n :=

[
xBiCG∗

n

xBiCG
n

]
, r̃CG

n :=

[
rBiCG

n

rBiCG∗
n

]
, p̃CG

n :=

[
pBiCG∗

n

pBiCG
n

]

in the previous recurrences, we readily obtain the algorithm of Bi-CG.
Furthermore, van der Vorst also states in [87, p.98] that the preconditioned Bi-CG can

be derived from the above framework with the preconditioner

M̃ =

[
O K

KT O

]
.(3.4)

In the next subsection, we extend the CR method to nonsymmetric linear systems using
this framework.

3.2.2 An extension of CR to nonsymmetric linear systems

We see from the previous subsection that the extended algorithm of CG is obtained by
applying the preconditioned CG method to (3.2), and that the resulting algorithm (Bi-CG)
has attractive coupled two-term recurrences. Analogously, in this subsection, we consider
applying the preconditioned CR method to (3.2).

Based on the unpreconditioned CR algorithm found in [70, p.194], we can obtain the
preconditioned algorithm described below.

Algorithm 3.1: Preconditioned CR method

x0 is an initial guess, r0 = b − Ax0,

31

set p−1 = 0, β−1 = 0,

for n = 0, 1, . . . ,until ‖rn‖ ≤ ε‖b‖ do:
pn = M−1rn + βn−1pn−1,

αn =
(M−1rn, AM−1rn)
(M−1Apn, Apn)

,

xn+1 = xn + αnpn,

rn+1 = rn − αnApn,

βn =
(M−1rn+1, AM−1rn+1)

(M−1rn, AM−1rn)
.

end

For actual computations, two recurrences, Apn = AM−1rn + βn−1Apn−1 and M−1rn+1 =
M−1rn − αnM−1Apn, are added to Algorithm 3.1 to reduce the number of matrix-vector
products and solve the preconditioner in each iteration step.
Next, we apply Algorithm 3.1 with the preconditioner (3.3) to (3.2), so that we have

p̃n = M̃−1r̃n + βn−1p̃n−1,

αn =
(M̃−1r̃n, ÃM̃−1r̃n)
(M−1Ãp̃n, Ãp̃n)

,

x̃n+1 = x̃n + αnp̃n,

r̃n+1 = r̃n − αnÃp̃n,

βn =
(M̃−1r̃n+1, ÃM̃−1r̃n+1)

(M̃−1r̃n, ÃM̃−1r̃n)
.

Substituting M̃−1 = M̃ of (3.3) and the vectors

x̃n :=

[
x∗

n

xn

]
, r̃n :=

[
rn

r∗
n

]
, p̃n :=

[
p∗

n

pn

]

in the previous recurrences, we readily obtain the new algorithm. Since Bi-CG is obtained
from the preconditioned CG and the algorithm is obtained from the preconditioned CR,
we call it Bi-CR.

Algorithm 3.2: Bi-CR method for real systems

x0 is an initial guess, r0 = b − Ax0,

choose r∗
0 (for example, r∗

0 = r0),
set p∗

−1 = p−1 = 0, β−1 = 0,

for n = 0, 1, . . . ,until ‖rn‖ ≤ ε‖b‖ do:
pn = rn + βn−1pn−1,(3.5)
p∗

n = r∗
n + βn−1p

∗
n−1,(3.6)

(Apn = Arn + βn−1Apn−1,)

αn =
(r∗

n, Arn)
(ATp∗

n, Apn)
,(3.7)

xn+1 = xn + αnpn,

32

rn+1 = rn − αnApn,

r∗
n+1 = r∗

n − αnATp∗
n,

βn =
(r∗

n+1, Arn+1)
(r∗

n, Arn)
.(3.8)

end

Here, Apn = Arn + βn−1Apn−1 is newly added to reduce the number of matrix-vector
products per iteration step. We see from Algorithm 3.2 that if the coefficient matrix is
symmetric, Bi-CR reduces to CR.

Furthermore, if we apply Algorithm 3.1 with the preconditioner (3.4) to (3.2), then we
obtain the following preconditioned Bi-CR:

Algorithm 3.3: Preconditioned Bi-CR method for real systems

x0 is an initial guess, r0 = b − Ax0,

choose r∗
0 (for example, r∗

0 = r0),
set p∗

−1 = p−1 = 0, β−1 = 0,

for n = 0, 1, . . . ,until ‖rn‖ ≤ ε‖b‖ do:
pn = K−1rn + βn−1pn−1,

p∗
n = K−Tr∗

n + βn−1p
∗
n−1,

(Apn = AK−1rn + βn−1Apn−1,)

αn =
(K−Tr∗

n, AK−1rn)
(K−TATp∗

n, Apn)
,

xn+1 = xn + αnpn,

rn+1 = rn − αnApn,

r∗
n+1 = r∗

n − αnATp∗
n,

(K−Tr∗
n+1 = K−Tr∗

n − αnK−TATp∗
n,)

βn =
(K−Tr∗

n+1, AK−1rn+1)
(K−Tr∗

n, AK−1rn)
.

end

Here, let us remark on the name Bi-CR. In [13], a biconjugate residual (BCR) method is
introduced with the same name as our method; however, the two algorithms are mathe-
matically different since Algorithm 3.2 generates xn−x0 ∈ Kn(A, r0) while BCR generates
xBCR

n − xBCR
0 /∈ Kn(A, rBCR

0) for nonsymmetric linear systems.
At the end of this section, we show the computational cost for Bi-CG and Bi-CR in

Table 3.1. “AXPY” denotes addition of scaled vectors, “6 or 7” denotes “6” for the unpre-
conditioned Bi-CR and “7” for the preconditioned one, and “1+1” denotes 1 multiplication
with the matrix and 1 with its transpose.

Table 3.1. Summary of cost per iteration step.

Inner Matrix-Vector Preconditioner
Method Product AXPY Product Solve
Bi-CG 2 5 1+1 1+1
Bi-CR 2 6 or 7 1+1 1+1

33

From Table 3.1, we can say that Bi-CG and Bi-CR require almost the same memory and
computational work per iteration step.

3.2.3 A derivation of Bi-CR for non-Hermitian linear systems

In this subsection, we show that a complex version of Bi-CR can be derived from the
preconditioned COCR method given later (Algorithm 4.2) and an extension of van der
Vorst’s framework. First, we consider the following 2N × 2N complex symmetric linear
system: [

O A
AT O

] [
x∗

x

]
=

[
b

b
∗

]
, or Ãx̃ = b̃.(3.9)

We can see from the system (3.9) that it is mathematically equivalent to

Ax = b and ATx∗ = b
∗(⇔ AHx∗ = b∗).

If we apply the algorithm of COCR with the preconditioner

M̃ =

[
O I
I O

]
, I : identity matrix,(3.10)

to (3.9), then the resulting algorithm at the nth iteration step can be written as

p̃COCR
n = M̃−1r̃COCR

n + βn−1p̃
COCR
n−1 ,

αn =
(M̃−1r̃COCR

n , ÃM̃−1r̃COCR
n)

(Ãp̃COCR
n , M̃−1Ãp̃COCR

n)
,

x̃COCR
n+1 = x̃COCR

n + αnp̃COCR
n ,

r̃COCR
n+1 = r̃COCR

n − αnÃp̃COCR
n ,

βn =
(M̃−1r̃COCR

n+1 , ÃM̃−1r̃COCR
n+1)

(M̃−1r̃COCR
n , ÃM̃−1r̃COCR

n)
.

Substituting M̃−1(= M̃) of (3.10) and the vectors

x̃COCR
n :=

[
xn

x∗
n

]
, r̃COCR

n :=

[
rn

r∗
n

]
, p̃COCR

n :=

[
p∗

n

pn

]

in the previous recurrences, and using the following results,

(M̃−1r̃COCR
n , ÃM̃−1r̃COCR

n) = [r∗
n
TrT

n]
[

Arn

ATr∗
n

]
= r∗

n
TArn + rT

nATr∗
n

= r∗
n
HArn + (rT

nATr∗
n)T

= (r∗
n, Arn) + r∗

n
HArn

= 2(r∗
n, Arn),

(Ãp̃COCR
n , M̃−1Ãp̃COCR

n) = [(Apn)T(ATp∗
n)T]

[
ATp∗

n

Apn

]

34

= (Apn)TATp∗
n + (ATp∗

n)TApn

= (pT
nATATp∗

n)T + (AHp∗
n)HApn

= (AHp∗
n)HApn + (AHp∗

n, Apn)
= 2(AHp∗

n, Apn),

we readily obtain the algorithm of Bi-CR for solving general non-Hermitian linear systems.

Algorithm 3.4: Bi-CR method for complex systems

x0 is an initial guess, r0 = b − Ax0,

choose r∗
0 (for example, r∗

0 = r0),
set p∗

−1 = p−1 = 0, β−1 = 0,

for n = 0, 1, . . . ,until ‖rn‖ ≤ ε‖b‖ do:
pn = rn + βn−1pn−1,

p∗
n = r∗

n + β̄n−1p
∗
n−1,

(Apn = Arn + βn−1Apn−1,)

αn =
(r∗

n, Arn)
(AHp∗

n, Apn)
,

xn+1 = xn + αnpn,

rn+1 = rn − αnApn,

r∗
n+1 = r∗

n − ᾱnAHp∗
n,

βn =
(r∗

n+1, Arn+1)
(r∗

n, Arn)
.

end

Here, Apn = Arn + βn−1Apn−1 is newly added to reduce the number of matrix-vector
products per iteration step.

Furthermore, if we apply the COCR method with the preconditioner (3.4) to (3.2), then
we obtain the following preconditioned Bi-CR:

Algorithm 3.5: Preconditioned Bi-CR method for complex systems

x0 is an initial guess, r0 = b − Ax0,

choose r∗
0 (for example, r∗

0 = r0),
set p∗

−1 = p−1 = 0, β−1 = 0,

for n = 0, 1, . . . ,until ‖rn‖ ≤ ε‖b‖ do:
pn = K−1rn + βn−1pn−1,

p∗
n = K−Hr∗

n + β̄n−1p
∗
n−1,

(Apn = AK−1rn + βn−1Apn−1,)

αn =
(K−Hr∗

n, AK−1rn)
(K−HAHp∗

n, Apn)
,

xn+1 = xn + αnpn,

rn+1 = rn − αnApn,

r∗
n+1 = r∗

n − ᾱnAHp∗
n,

35

(K−Hr∗
n+1 = K−Hr∗

n − ᾱnK−HAHp∗
n,)

βn =
(K−Hr∗

n+1, AK−1rn+1)
(K−Hr∗

n, AK−1rn)
.

end

The derivation processes for Bi-CR that we gave are shown below.

PCOCR (complex)
[§3.2.3]−→ PBi-CR (complex)

⏐⏐� [A ∈ RN×N]
⏐⏐� [A ∈ RN×N]

PCR (real)
[§3.2.2]−→ PBi-CR (real)

From the above, we see that the derivation process in this subsection includes the previous
one. Hence, we can say that PCOCR plays an essential role in obtaining PBi-CR.

3.3 Some properties and other derivations of Bi-CR

In this section, we discuss some properties of Bi-CR, and then give other derivations.

3.3.1 Some properties

Observing Algorithm 3.2, we see that four iterates rn, pn, r∗
n, and p∗

n can be expressed as

rn = Rn(A)r0, pn = Pn(A)r0,(3.11)
r∗

n = Rn(AT)r∗
0, p∗

n = Pn(AT)r∗
0,(3.12)

where Rn and Pn are polynomials of degree n satisfying

R0(λ) := 1, P0(λ) := 1,

Rn(λ) := Rn−1(λ) − αn−1λPn−1(λ),
Pn(λ) := Rn(λ) + βn−1Pn−1(λ), n = 1, 2, . . .

From (3.11), (3.12), and Algorithm 3.2, the following results are obtained if breakdown
does not occur:

Theorem 3.3.1 For i �= j, the following biorthogonality properties hold:

(r∗
i , Arj) = 0,(3.13)

(ATp∗
i , Apj) = 0.(3.14)

Proof. It follows from (3.11) and (3.12) that

(r∗
i , Arj) = (Ri(AT)r∗

0, ARj(A)r0) = (Rj(AT)r∗
0, ARi(A)r0) = (r∗

j , Ari).

Similarly, from (3.14) we obtain (ATp∗
i , Apj) = (ATp∗

j , Api). Hence, the statements of
(3.13) and (3.14) are equivalent to

(r∗
i , Arj) = 0 and (ATp∗

i , Apj) = 0 for all j < i.(3.15)

36

Now, we give the proof of (3.15) by induction. Since the trivial case is obvious from
Algorithm 3.2, we assume that properties (3.15) hold for j < i ≤ k. Then, we show that

(r∗
k+1, Arj) = 0,(3.16)

(ATp∗
k+1, Apj) = 0.(3.17)

First, let us show (3.16). For the case j < k it follows from the above assumption that

(r∗
k+1, Arj) = (r∗

k, Arj) − αk(ATp∗
k, Arj)

= −αk(ATp∗
k, Arj)

= −αk(ATp∗
k, Apj) − αkβj−1(ATp∗

k, Apj−1)
= 0.

For the case j = k we obtain

(r∗
k+1, Ark) = (r∗

k, Ark) − αk(ATp∗
k, Ark)

= (r∗
k, Ark) − αk(ATp∗

k, Apk) − αkβk−1(ATp∗
k, Apk−1)

= (r∗
k, Ark) − αk(ATp∗

k, Apk)
= 0

from the computational formula of αk of (3.7). Next, we show (3.17). For the case j < k it
follows from the first result of the proof that

(ATp∗
k+1, Apj) = (ATr∗

k+1, Apj) + βk(ATp∗
k, Apj) =

1
αj

(ATr∗
k+1, rj − rj+1) = 0.

For the case j = k we obtain

(ATp∗
k+1, Apk) = (ATr∗

k+1, Apk) + βk(ATp∗
k, Apk)

=
1
αk

(ATr∗
k+1, rk − rk+1) + βk(ATp∗

k, Apk)

= − 1
αk

(ATr∗
k+1, rk+1) + βk(ATp∗

k, Apk)

= 0

from the computational formulas of αk of (3.7) and βk of (3.8). �

Corollary 3.3.2 Some further properties of Bi-CR are

(r∗
i , Apj) = 0 for i > j,(3.18)

(r∗
i , Ari) = (r∗

i , Api),(3.19)
(ATr∗

i , Api) = (ATp∗
i , Api).(3.20)

Proof. First, we give the proof of (3.18). From the recurrence (3.5) it follows that
(r∗

i , Apj) = (r∗
i , Arj) + βj−1(r∗

i , Apj−1), and thus from the property (3.13) we obtain
(r∗

i , Apj) = βj−1(r∗
i , Apj−1). Applying this process recursively, we finally obtain (r∗

i , Apj)
= βj−1βj−2 · · ·β0(r∗

i , Ap0). Hence, from p0 = r0 and (3.13) the property (3.18) is estab-
lished.

37

Second, we give the proof of (3.19). From the recurrence (3.5) it follows that (r∗
i , Ari) =

(r∗
i , Api) − βi−1(r∗

i , Api−1). Since the second term is zero by (3.18), the property (3.19) is
established.

Finally, we give the proof of (3.20). From the recurrence (3.6) it follows that (ATr∗
i , Api)

= (ATp∗
i , Api)−βi−1(ATp∗

i−1, Api). Since the second term is zero from (3.14), the property
(3.20) is established. �

We see from the algorithm of Bi-CR that it can be also regarded as the algorithm of
Bi-CG with formal inner product (y∗, y)A := (y∗)TAy. In this sense, M. Gutknecht have
developed Bi-CG for (y∗, y)B, where BA = AB. The theoretical results are given in [52].

3.3.2 Other derivations

In this subsection, we give other derivations of Bi-CR. Some of the results will be useful
for obtaining variants of Bi-CR in chapter 5.

Let us redefine the nth residual vector and the search direction as

rn := Rn(A)r0, pn := Pn(A)r0,(3.21)

where Rn and Pn denote the following coupled two-term recurrences:

R0(λ) := 1, P0(λ) := 1,(3.22)
Rn(λ) := Rn−1(λ) − αn−1λPn−1(λ),(3.23)
Pn(λ) := Rn(λ) + βn−1Pn−1(λ), n = 1, 2, . . . ,(3.24)

where, at this point, αn−1 and βn−1 are free parameters.
From here to the end of this subsection, we show that Algorithm 3.4 is obtained by

using (3.21) and the following conditions:

rn ⊥ AHKn(AH, r∗
0) and Apn ⊥ AHKn(AH, r∗

0),(3.25)

which imply the biorthogonality properties (3.13)-(3.14). It follows from the relation (3.21)-
(3.24) that rn and pn are updated as follows:

rn = rn−1 − αn−1Apn−1,(3.26)
pn = rn + βn−1pn−1.(3.27)

Since the parameters αn and βn in (3.26) and (3.27) are not determined, we first give an
auxiliary formula for αn−1. From (3.26), the inner product of (AH)nr∗

0 and rn is computed
as

((AH)nr∗
0, rn) = ((AH)nr∗

0, rn−1) − αn−1((AH)nr∗
0, Apn−1).(3.28)

It follows from (AH)nr∗
0 ∈ AHKn(AH, r∗

0) and the conditions (3.25) that ((AH)nr∗
0, rn) = 0.

Thus from (3.28) it follows that

αn−1 =
((AH)nr∗

0, rn−1)
((AH)nr∗

0, Apn−1)
.(3.29)

Next, we give an auxiliary formula for βn−1. From (3.27), the inner product of (AH)nr∗
0

and Apn is computed as

((AH)nr∗
0, Apn) = ((AH)nr∗

0, Arn) + βn−1((AH)nr∗
0, Apn−1).(3.30)

38

From the conditions (3.25), we obtain ((AH)nr∗
0, Apn) = 0. Thus from (3.30), it follows

that

βn−1 = − ((AH)nr∗
0, Arn)

((AH)nr∗
0, Apn−1)

.

Moreover, from formula (3.29) βn−1 can be written as follows:

βn−1 = −αn−1
((AH)nr∗

0, Arn)
((AH)nr∗

0, rn−1)
.(3.31)

Here, let us give practical formulas for αn−1 and βn−1 using the following auxiliary vectors:

r∗
n := R̄n(AT)r∗

0, p∗
n := P̄n(AT)r∗

0.(3.32)

It follows from the relation (3.23)-(3.24) that r∗
n and p∗

n in (3.32) are updated as follows:

r∗
n = r∗

n−1 − ᾱn−1A
Hp∗

n−1,(3.33)
p∗

n = r∗
n + β̄n−1p

∗
n−1.(3.34)

Note that the auxiliary vectors r∗
n−1, p∗

n−1 can be written as

r∗
n−1 = R̄n−1(AT)r∗

0 = cn−1(AH)n−1r∗
0 + z1, z1 ∈ Kn−1(AH, r∗

0),(3.35)
p∗

n−1 = P̄n−1(AT)r∗
0 = cn−1(AH)n−1r∗

0 + z2, z2 ∈ Kn−1(AH, r∗
0),(3.36)

where cn−1 = (−1)n−1∏n−2
i=0 ᾱi. Then, it follows from (3.35) and (3.36) that (3.29) satisfies

αn−1 =
(AHr∗

n−1, rn−1) − (AHz1, rn−1)
(AHp∗

n−1, Apn−1) − (AHz2, Apn−1)
.

Since (AHz1, rn−1) = (AHz2, Apn−1) = 0 by the conditions (3.25), the formula for αn−1 is
given by

αn−1 =
(AHr∗

n−1, rn−1)
(AHp∗

n−1, Apn−1)
.(3.37)

Similarly, from (3.35) and the conditions (3.25), the auxiliary formula (3.31) is written as

βn−1 =
(AHr∗

n, rn)
(AHr∗

n−1, rn−1)
.(3.38)

Compared with αn−1 and βn−1 in Algorithm 3.4, we rewrite (3.37) and (3.38) in the fol-
lowing form:

αn−1 =
(r∗

n−1, Arn−1)
(AHp∗

n−1, Apn−1)
, βn−1 =

(r∗
n, Arn)

(r∗
n−1, Arn−1)

.(3.39)

Finally, we give an update formula for the approximate solution xn. From the relation
(3.26) and recalling rn = b − Axn, it follows that

xn = xn−1 + αn−1pn−1.(3.40)

39

From the recurrence relations (3.26), (3.27), (3.33), (3.34), the formulas of (3.39), and the
approximate solution (3.40), we obtain Algorithm 3.4.

A derivation based on an A-biorthogonalization Process

We give another derivation of Bi-CR. First, we introduce an A-biorthogonalization process.
Then, we show that the Bi-CR method is also derived from the process. Similar to the
bi-Lanczos process, an A-biorthogonalization process of Kn(A, r0) and Kn(AH, r∗

0) is given
below.

Algorithm 3.6: A-biorthogonalization process

set v0 = r0 = b − Ax0, v∗
0 = r∗

0 = b∗ − AHx∗
0,

set t0,0 = (AHv∗
0, Av0)/(v∗

0, Av0),
set v1 = −α0(Av0 − t0,0v0), v∗

1 = −α0(AHv∗
0 − t̄0,0v

∗
0),(3.41)

for n = 1, 2, . . . do:
tn−1,n = (AHv∗

n−1, Avn)/(v∗
n−1, Avn−1),

tn,n = (AHv∗
n, Avn)/(v∗

n, Avn),
vn+1 = −αn(Avn − tn,nvn − tn−1,nvn−1),(3.42)
v∗

n+1 = −ᾱn(AHv∗
n − t̄n,nv∗

n − t̄n−1,nv∗
n−1).(3.43)

end

where the scalar sequences α0, . . . , αn are not determined at this point, and these are used
as a condition for deriving approximate solutions from residual vectors. From Algorithm
3.6 it is clear that the vector sequences v0, v1, . . . and v∗

0, v
∗
1, . . . satisfy the following A-

biorthogonality property:

(v∗
i , Avj) = 0 for i �= j.

Now, we consider generating the nth approximate solution xn for Ax = b and x∗
n for

AHx∗ = b∗ over the following affine spaces:

xn := x0 + zn, zn ∈ Kn(A, r0),(3.44)
x∗

n := x∗
0 + z∗

n, z∗
n ∈ Kn(AH, r∗

0).

Then, the nth corresponding residual vectors rn and r∗
n are given by

rn := b − Axn = r0 − Azn, rn ∈ Kn+1(A, r0),(3.45)
r∗

n := b∗ − AHx∗
n = r∗

0 − AHz∗
n, r∗

n ∈ Kn+1(AH, r∗
0).(3.46)

Since vn of (3.42) is in Kn+1(A, r0) and v∗
n of (3.43) is in Kn+1(AH, r∗

0), we can use vn,
v∗

n as the nth residual vectors, rn of (3.45) and r∗
n of (3.46), respectively. Then, it follows

from the formulas (3.42) and (3.43) that we obtain

rn+1 = −αn(Arn − tn,nrn − tn−1,nrn−1),(3.47)
r∗

n+1 = −ᾱn(AHr∗
n − t̄n,nr∗

n − t̄n−1,nr∗
n−1),(3.48)

where tn−1,n = (AHr∗
n−1, Arn)/(r∗

n−1, Arn−1) and tn,n = (AHr∗
n, Arn)/(r∗

n, Arn). Substi-
tuting (3.45) and (3.46) into (3.47) and (3.48) respectively, the residual vectors are com-
puted as follows:

rn+1 = αn(tn,n + tn−1,n)r0 − αnA(rn + tn,nzn + tn−1,nzn−1),(3.49)
r∗

n+1 = ᾱn(t̄n,n + t̄n−1,n)r∗
0 − ᾱnAH(r∗

n + t̄n,nz∗
n + t̄n−1,nz∗

n−1).(3.50)

40

Comparing the coefficient of r0 in (3.45) with the one of r0 in (3.49), αn must satisfy

αn(tn,n + tn−1,n) = 1 for n ≥ 1(3.51)

to derive an update formula of the approximate solution xn from the information of rn. In
addition, from (3.50) and (3.51) we can also derive the update formula of x∗

n. However, we
omit the formula.

For the special case n = 0, from (3.41), (3.45), (3.46) it follows that

r1 = r0 − Az1 = −α0(Ar0 − t0,0r0),(3.52)
r∗

1 = r∗
0 − AHz∗

1 = −ᾱ0(AHr∗
0 − t̄0,0r

∗
0),(3.53)

and thus α0 satisfies

α0 =
1

t0,0
=

(r∗
0, Ar0)

(AHr∗
0, Ar0)

.(3.54)

Now, we can compute the residual vectors of Bi-CR by using recurrence relations (3.47)-
(3.48), and (3.51)-(3.54).

Here, let us give a property of this process. From Algorithm 3.6 it is clear that the
sequences r0, r1, . . . and r∗

0, r
∗
1, . . . satisfy the following A-biorthogonality property:

(r∗
i , Arj) = 0 for i �= j.(3.55)

Next, we consider an efficient way to compute the residual vectors rn by introducing
two auxiliary vectors, and we give a formula for updating the approximate solution xn. Let
us define auxiliary vectors pn, p∗

n as

pn :=
zn+1 − zn

αn
, p∗

n :=
z∗

n+1 − z∗
n

ᾱn
.(3.56)

Multiplying left and right side of (3.56) by −αnA and −ᾱnAH respectively, and from the
definitions (3.45) and (3.46) it follows that

rn+1 = rn − αnApn, r∗
n+1 = r∗

n − ᾱnAHp∗
n.(3.57)

Substituting the relation (3.51) into tn,n of (3.47) and (3.48), then the recurrence relations
(3.47) and (3.48) can be written as

rn+1 − rn = −αnArn − αntn−1,n(rn − rn−1),(3.58)
r∗

n+1 − r∗
n = −ᾱnAHr∗

n − ᾱnt̄n−1,n(r∗
n − r∗

n−1).(3.59)

From (3.57) it follows that rn+1 − rn = −αnApn, r∗
n+1 − r∗

n = −ᾱnAHp∗
n, and thus

substituting these relations into (3.58) and (3.59) respectively, we obtain

pn = rn − αn−1tn−1,npn−1, p∗
n = r∗

n − ᾱn−1t̄n−1,np∗
n−1.(3.60)

From the inner product of AHr∗
n+1 and (3.47), using (3.55) and the relation (AHr∗

n, Arn−1)
=(AHr∗

n−1, Arn), it follows that

αn = − (r∗
n+1, Arn+1)

(AHr∗
n+1, Arn)

.(3.61)

41

Substituting (3.61) into (3.60), we obtain

pn = rn + βn−1pn−1, p∗
n = r∗

n + β̄n−1p
∗
n−1,(3.62)

where βn−1 = (r∗
n, Arn)/(r∗

n−1, Arn−1). Comparing (3.52) and (3.53) with (3.62), we
obtain p0 = r0 and p∗

0 = r∗
0. Here, we show that αn satisfies the following relation:

αn =
1

tn,n + tn−1,n
=

(r∗
n, Arn)

(AHp∗
n, Apn)

.(3.63)

From (3.51) it is clear that the first equation of (3.63) is satisfied. Next, we show the second
equation of (3.63). From (3.60) it follows that

(r∗
n, Arn)

(AHp∗
n, Apn)

=
(r∗

n, Arn)
(AHr∗

n, Apn) + βn−1(AHp∗
n−1, Apn)

=
1

(AHr∗
n,Arn)

(r∗
n,Arn) + βn−1

(AHr∗
n,Arn−1)

(r∗
n,Arn) + βn−1

(AHp∗
n−1,Apn)

(r∗
n,Arn)

=
1

tn,n + tn−1,n
,

where we used the relation (AHp∗
n−1, Apn) = 0 because

(AHp∗
n−1, Apn) =

1
αn

(AHp∗
n−1, rn) − 1

αn
(AHp∗

n−1, rn+1) = 0,

where (AHp∗
n−1, rn) = (AHp∗

n−1, rn+1) = 0 from p∗
n−1 ∈ span{r∗

0, . . . , r
∗
n−1} and the A-

biorthogonality property (3.55). For computing the approximate solutions, from the rela-
tion between (3.44) and (3.56) it follows that

xn+1 = xn + αnpn.(3.64)

From the relations (3.52)-(3.54), (3.57), and (3.62)-(3.64), we obtain the Bi-CR method.

A derivation of Bi-CR in matrix form

Here, we derive the Bi-CR method by using a matrix form of Algorithm 3.6. Let r0 be
the initial residual vector. Then, from Algorithm 3.6 A-biorthogonal basis of the Krylov
subspace Kn(A, r0) and Kn(AH, r∗

0) can be expressed in the following matrix form:

A [r0, r1, . . . , rn−1]︸ ︷︷ ︸
Rn

= [r0, r1, . . . , rn−1, rn]︸ ︷︷ ︸
Rn+1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

t0,0 t0,1

−α−1
0 t1,1

. . .

−α−1
1

. . . tn−2,n−1

. . . tn−1,n−1

−α−1
n−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where tk−1,k =
(AHr∗

k−1,Ark)

(r∗
k−1

,Ark−1)
and tk,k = (AHr∗

k,Ark)

(r∗
k
,Ark) . From the above matrix form, we have

ARn = Rn+1Tn+1,n and AHR∗
n = R∗

n+1T̄n+1,n.(3.65)

42

Since the matrix Rn is generated via Algorithm 3.6, it is clear that R∗H
n ARn = Dn, where

Dn is a diagonal matrix of order n. Since the scalar sequence α0, . . . , αn−1 still remains
unknown. We show that if we determine the parameters such that approximate solutions
x0, . . . ,xn−1 can be extracted from information of r0, . . . , rn−1, then we obtain the desired
algorithm of the Bi-CR method. Let Xn be a matrix with columns [x0, . . . ,xn−1] and 1 be
(1, . . . , 1)T. Then, we can connect Rn and Xn in the following form:

Rn := b1T
n − AXn = [b − Ax0, b − Ax1, . . . , b − Axn−1].(3.66)

From the above definition, we can regard the ith column of Rn as the ith residual vector.
Substituting (3.66) into (3.65), it follows that

ARn = (b1T
n+1 − AXn+1)Tn+1,n.

Then, we obtain

Rn = (x1T
n+1 − Xn+1)Tn+1,n,

where x is the exact solution of the linear system Ax = b. Hence, to extract Xn from Rn,
we need the following condition:

x1T
n+1Tn+1,n = On.

This leads to

α−1
0 = t0,0,

α−1
k = tk,k + tk−1,k, 1 ≤ k ≤ n − 1.

Substituting the above recurrence into Tn+1,n, we have

Tn+1,n =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

α−1
0 t0,1

−α−1
0 α−1

1 − t0,1
. . .

−α−1
1

. . . tn−2,n−1

. . . α−1
n−1 − tn−2,n−1

−α−1
n−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Then, Tn+1,n can be factorized as follows:

Tn+1,n =

⎛
⎜⎜⎜⎜⎝

1
−1

. . .

. . . 1
−1

⎞
⎟⎟⎟⎟⎠
⎛
⎜⎝

α−1
0

. . .
α−1

n−1

⎞
⎟⎠
⎛
⎜⎜⎜⎜⎝

1 α0t0,1

1
. . .
. . . αn−2tn−2,n−1

1

⎞
⎟⎟⎟⎟⎠

= B
(L)
n+1,nΩ−1

n B(U)
n .

From (3.65) and the above factorization, we obtain

ARn = Rn+1Tn+1,n = Rn+1B
(L)
n+1,nΩ−1

n B(U)
n ,(3.67)

AHR∗
n = R∗

n+1T̄n+1,n = R∗
n+1B̄

(L)
n+1,nΩ̄−1

n B̄(U)
n .(3.68)

43

Here, we introduce Pn := Rn(B(U)
n)−1 and P ∗

n := R∗
n(B̄(U)

n)−1. Then from (3.67) and (3.68),
we obtain

APn = ARn(B(U)
n)−1 = Rn+1B

(L)
n+1,nΩ−1

n ,(3.69)

AHP ∗
n = AHR∗

n(B̄(U)
n)−1 = R∗

n+1B̄
(L)
n+1,nΩ̄−1

n .

The above matrix form are equivalent to the following recurrences:

rk = rk−1 − αk−1Apk−1, 1 ≤ k ≤ n,(3.70)
r∗

k = rk−1 − ᾱk−1A
Hp∗

k−1, 1 ≤ k ≤ n.(3.71)

From Pn = Rn(B(U)
n)−1 and P ∗

n = R∗
n(B̄(U)

n)−1, it follows that

pk = rk + βk−1pk−1, 1 ≤ k ≤ n,(3.72)
p∗

k = r∗
k + β̄k−1p

∗
k−1, 1 ≤ k ≤ n,(3.73)

where βk−1 := −αk−1tk−1,k. Here, we give the computational formula of approximate
solution. From (3.69), it follows that

APn = Rn+1B
(L)
n+1,nΩ−1

n

= (b1T − AXn+1)B
(L)
n+1,nΩ−1

n

= −AXn+1B
(L)
n+1,nΩ−1

n .

Thus, we obtain

PnΩn = Xn+1(−B
(L)
n+1,n)

and it is equivalent to

xk = xk−1 + αk−1pk−1, 1 ≤ k ≤ n.(3.74)

Now, we give more practical computational formulas of αk and βk. From (3.65), it follows
that

(AHR∗
n)HARn = R∗H

n ARn+1Tn+1,n.

From the (k +1, k) entry of the above matrices, we have (AHr∗
k, Ark−1) = −α−1

k−1(r
∗
k, Ark).

Thus from βk−1 = −αk−1tk−1,k, we obtain

βk = −αktk,k+1(3.75)

=
(r∗

k+1, Ark+1)
(AHr∗

k+1, Ark)
· (AHr∗

k, Ark+1)
(r∗

k, Ark)

=
(r∗

k+1, Ark+1)
(r∗

k, Ark)
.

We used the relation (r∗
k, Ark+1) = (r∗

k+1, Ark) since rn is written as the product of matrix
polynomial and initial residual vector, i.e.,

(r∗
k, Ark+1) = (R̄k(AT)r∗

0, ARk+1(A)r0)
= (R̄k+1(AT)R̄k(AT)r∗

0, Ar0)
= (R̄k(AT)R̄k+1(AT)r∗

0, Ar0)
= (R̄k+1(AT)r∗

0, ARk(A)r0)
= (r∗

k+1, Ark).

44

From (3.69) and recalling P ∗
n = R∗

n(B̄(U)
n)−1, it follow that

(AHP ∗
n)HAPn = (AHP ∗

n)HRn+1B
(L)
n+1,nΩ−1

n = (B̄(U)
n)−HR∗H

n ARn+1B
(L)
n+1,nΩ−1

n .

This leads to

(AHP ∗
n)HAPn =

⎛
⎜⎝ d0

∗ . . .
∗ ∗ dn−1

⎞
⎟⎠,

where dk = (r∗
k, Ark)α−1

k . Thus, we obtain

αk =
(r∗

k, Ark)
(AHp∗

k, Apk)
.(3.76)

Moreover, since (AHpi, Apj) = (AHpj , Api), AHp∗
i and Apj are orthogonal, i.e.,

(AHp∗
i , Apj) = 0 for i �= j.

From (3.70)-(3.76), we obtain the algorithm of Bi-CR.

3.4 Numerical experiments

In this section, we report the results of numerical experiments on a range of Matrix Market
problems from the Harwell-Boeing collection [26], the NEP collection [3], the SPARSKIT
collection [67], and Tim Davis’s collection [21]. The iterative solvers used in the experiments
are Bi-CG and Bi-CR, and we evaluate the two methods with respect to the number of
iterations (Its), computational time (Time), and log10 of the true relative residual 2-norm
(TRR) defined as log10 ‖b−Axn‖/|b‖. All experiments were performed on an ALPHA work
station with a 750MHz processor using double precision arithmetic. Codes were written in
Fortran 77 and compiled with the optimization option -O4. In all cases the iteration was
started with x0 = 0 and r∗

0 = r0 in both methods, the right-hand side b was chosen as a
vector with random entries from -1 to 1, and the stopping criterion was ‖rn‖/‖b‖ ≤ 10−12.
The convergence histories show the number of iterations (on the horizontal axis) versus
log10 of the relative residual 2-norm, log10 ‖rn‖/‖b‖ (on the vertical axis).

Matrices in the experiments come from electronic circuit design (ADD20, ADD32,
MEMPLUS), electrical engineering (BFW782A), finite element modeling (CAVITY05, CAV
ITY10, FIDAP036), fluid dynamics (CDDE1, E20R0000, E30R0000), oil reservoir simula-
tion (ORSIRR1, ORSIRR2, ORSREG1, SHERMAN1, SHERMAN5), partial differential
equations (PDE2961), aeroelasticity (TOLS4000), and petroleum engineering (WATT1,
WATT2).

� Comparison of Bi-CG and Bi-CR

We evaluate the performance of Bi-CG and Bi-CR with no preconditioning. The numerical
results are shown in Table 3.2.

Looking at Its and Time, we see that Bi-CR required only about 90% of the iteration
steps and computational time of Bi-CG in BFW782A, FIDAP036, TOLS4000, and WATT1.

45

Notably in WATT2, Bi-CR performed much better than Bi-CG in that Bi-CR required only
about 46% of the iteration steps and computational time of Bi-CG. In other problems, Bi-
CG and Bi-CR required almost the same number of iteration steps and computational
time.

In terms of TRR, accuracy of both approximate solutions was worse than the stop-
ping criterion in E30R0000, TOLS4000, and WATT2; however, Bi-CR generated better
approximate solutions than Bi-CG in TOLS4000 and in WATT2.

Residual 2-norm histories of Bi-CG and Bi-CR for ADD20, E30R0000, and WATT2 are
shown in Figs. 3.1, 3.2, and 3.3 respectively. We see from Fig. 3.1 and Fig. 3.2 that Bi-CG
gives many peaks in the residual norm, whereas Bi-CR gives much smoother convergence
behavior. In Fig. 3.3, Bi-CR gave much smoother convergence behavior and converged
much faster than Bi-CG.

� Comparison of Bi-CG and Bi-CR with ILU(0) preconditioning

We evaluate the performance of Bi-CG and Bi-CR with ILU(0) preconditioning. The
numerical results are shown in Table 3.3, where the result for TOLS4000 is not listed since
ILU(0) caused breakdown.

With respect to Its and Time, Bi-CR required about 90% of the iteration steps and
computational time of Bi-CG in CAVITY10, E20R0000, and E30R0000. There was little
difference in the performance of Bi-CG and Bi-CR in other problems except TOLS4000,
since the preconditioner was quite effective in improving the convergence behavior.

In the terms of TRR, the accuracy of both approximate solutions was worse than the
stopping criterion in E30R0000 and WATT2. In other problems, the two methods generated
almost the same accuracy of the approximate solutions as one of the stopping criterion.

Residual 2-norm histories of Bi-CG and Bi-CR with ILU(0) preconditioning for ADD20,
E30R0000, and WATT2 are shown in Figs. 3.4, 3.5, and 3.6 respectively. As seen in
Fig. 3.4, the convergence behavior with Bi-CG was jagged, whereas that with Bi-CR was
smoother. These histories were similar to the ones without preconditioning in Fig. 3.1.
We see from Fig. 3.5 that Bi-CR showed fairly attractive convergence behavior in the last
phase; however the smoothness that we see in Fig. 3.2 was not observed. In Fig. 3.6, the
two methods showed similar convergence behavior.

3.5 Concluding remarks

Based on H. A. van der Vorst’s derivation of Bi-CG, we extended CR to nonsymmetric linear
systems without loss of its short-term recurrences. Then, we discussed some properties of
Bi-CR and found that iterates r∗

i and rj are A-orthogonal. On the other hand, we also
gave other derivations of Bi-CR based on an A-biorthogonalization process, and its matrix
form.

From the numerical experiments we have learned that Bi-CR tends to show smoother
convergence behavior and often converges faster than Bi-CG. Since Bi-CG is a basic solver
for Bi-CGSTAB(�) and GPBi-CG, it may take the place of Bi-CG for attractive variants,
i.e., similar to product-type methods based on Bi-CG, we can consider product-type meth-
ods based on Bi-CR. This framework will be given in chapter 5.

In the next chapter, we will consider the Bi-CR method specialized to the case where
the coefficient matrix is complex symmetric.

46

Table 3.2. Matrices, their sizes (N), and numerical results of Bi-CG and Bi-CR without
preconditioning.

Its Time [sec] TRR
Matrix N Bi-CG Bi-CR Bi-CG Bi-CR Bi-CG Bi-CR

ADD20 2395 665 644 0.90 0.88 -11.98 -11.97
ADD32 4960 130 129 0.39 0.39 -12.08 -12.12
BFW782A 782 435 390 0.18 0.17 -11.50 -11.52
CAVITY05 1182 801 764 1.09 1.05 -12.04 -12.04
CAVITY10 2597 1236 1155 3.70 3.53 -12.50 -12.03
CDDE1 961 173 173 0.09 0.09 -12.07 -12.05
E20R0000 4241 1667 1597 9.01 8.74 -11.68 -11.69
E30R0000 9661 2565 2526 36.83 36.74 -10.21 -10.25
FIDAP036 3079 7263 6410 18.52 16.97 -11.48 -11.41
MEMPLUS 17758 1913 1849 21.74 21.57 -11.73 -11.75
ORSIRR1 1030 1646 1599 1.19 1.18 -11.87 -11.89
ORSIRR2 886 1192 1191 0.75 0.77 -12.11 -11.97
ORSREG1 2205 630 582 1.12 1.05 -12.00 -11.95
PDE2961 2961 335 319 0.60 0.58 -12.00 -12.55
SHERMAN1 1000 709 704 0.31 0.31 -12.01 -12.01
SHERMAN5 3312 2668 2664 3.83 3.88 -11.73 -11.02
TOLS4000 4000 6248 5577 5.72 5.19 -9.00 -10.10
WATT1 1856 544 492 0.80 0.74 -12.05 -12.01
WATT2 1856 1489 689 2.14 1.01 -6.78 -7.74

Table 3.3. Matrices, their sizes (N), and numerical results of Bi-CG and Bi-CR with
ILU(0) preconditioning.

Its Time [sec] TRR
Matrix N Bi-CG Bi-CR Bi-CG Bi-CR Bi-CG Bi-CR

ADD20 2395 274 274 0.72 0.73 -12.10 -12.14
ADD32 4960 63 63 0.30 0.31 -12.05 -12.17
BFW782A 782 128 118 0.14 0.13 -11.23 -11.26
CAVITY05 1182 168 168 0.48 0.49 -11.30 -11.36
CAVITY10 2597 275 238 1.92 1.72 -12.29 -11.95
CDDE1 961 55 54 0.04 0.04 -12.14 -12.12
E20R0000 4241 185 164 2.47 2.22 -12.16 -12.07
E30R0000 9661 303 266 11.10 9.90 -11.03 -11.06
FIDAP036 3079 177 177 1.07 1.09 -12.51 -12.00
MEMPLUS 17758 492 488 12.07 12.18 -11.90 -11.89
ORSIRR1 1030 76 72 0.10 0.10 -12.23 -11.99
ORSIRR2 886 77 73 0.09 0.09 -12.17 -12.05
ORSREG1 2205 95 93 0.29 0.29 -12.03 -12.01
PDE2961 2961 75 77 0.23 0.24 -12.00 -13.06
SHERMAN1 1000 63 62 0.04 0.04 -12.43 -12.10
SHERMAN5 3312 43 43 0.12 0.12 -12.17 -12.26
WATT1 1856 60 59 0.14 0.14 -12.25 -12.06
WATT2 1856 112 110 0.28 0.28 -8.09 -8.14

47

-12

-10

-8

-6

-4

-2

0

2

0 100 200 300 400 500 600 700

’Bi-CG’
’Bi-CR’

Figure 3.1: Residual 2-norm histories of Bi-CG and Bi-CR for ADD20.

-12

-10

-8

-6

-4

-2

0

2

4

0 500 1000 1500 2000 2500

’Bi-CG’
’Bi-CR’

Figure 3.2: Residual 2-norm histories of Bi-CG and Bi-CR for E30R0000.

-12

-10

-8

-6

-4

-2

0

2

4

6

0 200 400 600 800 1000 1200 1400 1600

’Bi-CG’
’Bi-CR’

Figure 3.3: Residual 2-norm histories of Bi-CG and Bi-CR for WATT2.

48

-12

-10

-8

-6

-4

-2

0

2

0 50 100 150 200 250 300

’Bi-CG’
’Bi-CR’

Figure 3.4: Residual 2-norm histories of Bi-CG and Bi-CR with ILU(0) for ADD20.

-12

-10

-8

-6

-4

-2

0

2

4

0 50 100 150 200 250 300 350

’Bi-CG’
’Bi-CR’

Figure 3.5: Residual 2-norm histories of Bi-CG and Bi-CR with ILU(0) for E30R0000.

-10

-5

0

5

0 20 40 60 80 100 120

’Bi-CG’
’Bi-CR’

Figure 3.6: Residual 2-norm histories of Bi-CG and Bi-CR with ILU(0) for WATT2.

49

Chapter 4

COCR: a conjugate orthogonal
conjugate residual method

4.1 Introduction

We consider the solution of nonsingular complex symmetric linear systems of the form
Ax = b, where A is an N × N non-Hermitian but symmetric matrix (A �= ĀT, A =
AT). Such systems arise in many important applications such as numerical computations
in quantum chemistry, eddy current problems, and numerical solutions of the complex
Helmholtz equation. Hence, there is a strong need for the fast solution of complex symmetric
linear systems. For solving such systems efficiently, van der Vorst and Melissen [88] proposed
the Conjugate Orthogonal Conjugate Gradient (COCG) method, which is regarded as an
extension of the Conjugate Gradient (CG) method [53]. QMR SYM [41], CSYM [14], and
Bi-CGCR [16] are also useful Krylov subspace methods. QMR SYM (QMR hereafter) is
derived from the complex symmetric Lanczos algorithm, CSYM is obtained from the idea
of QMR and tridiagonalization of A by Householder reflections, and Bi-CGCR is derived
from a particular case in Bi-CG [56, 35] for solving non-Hermitian linear systems. These
methods are often numerically robuster than COCG. However, these implementations are
more complicated.

In this chapter, we extend the Conjugate Residual (CR) method [82] to complex sym-
metric linear systems based on an observation of derivations of CG, CR, and COCG. Since
CR satisfies a minimal residual property, the extended algorithm, named COCR, can be
expected to give smoother convergence behavior than COCG in the residual norm. From
a more general point of view, the algorithm of COCR is also obtained from a special case
of Bi-CR which is given in the previous chapter, and this is similar to the relation between
COCG and Bi-CG.

This chapter is organized as follows: in the next section, first, we observe a way to derive
the algorithms of CG, CR, and COCG. Second, we derive COCR from the observation, and
its orthogonality properties are discussed. We also give other derivations of COCR based on
a conjugate A-orthogonalization process. In §4.3, we report the results of some numerical
examples. Finally, we make some concluding remarks in §4.4.

50

4.2 An extension of CR to complex symmetric linear systems

4.2.1 An observation of deriving CG, CR, and COCG

In this subsection, we discuss a way to obtain CG, CR, and COCG. Let xn be the nth
approximate solution in the methods. Then, the corresponding nth residual vector rn(:=
b−Axn) and search direction pn are given by the following coupled two-term recurrences:

r0 = b − Ax0, p0 = r0,(4.1)
rn = rn−1 − αn−1Apn−1,(4.2)
pn = rn + βn−1pn−1, n = 1, 2, . . .(4.3)

The differences among the algorithms of three methods are computational formulas of
αn−1 and βn−1 in the recurrences (4.2)-(4.3), and these parameters are determined by the
following orthogonality conditions:

rn ⊥ W and Apn ⊥ W.(4.4)

When A is Hermitian (positive definite),

• W = Kn(A, r0) leads to CG;
• W = AKn(A, r0) leads to CR.

When A is complex symmetric,

• W = Kn(Ā, r̄0) leads to COCG.

4.2.2 A derivation of COCR

In this subsection, we derive the algorithm of COCR, and discuss its orthogonality proper-
ties.

Let rn and pn be the nth residual vector and search direction of COCR, and also
given by the recurrences (4.1)-(4.3). Then, rn and pn can be computed by determining
αn−1 and βn−1. Hence, as we see in (4.4), a choice of subspace W is needed to determine
these parameters. Compared with the subspaces for CG and COCG, the main difference is
the complex conjugate, and thus it is natural from the subspace for CR that we take the
following choice:

• W = ĀKn(Ā, r̄0).

Hence, the following orthogonality conditions are chosen for COCR:

rn ⊥ ĀKn(Ā, r̄0) and Apn ⊥ ĀKn(Ā, r̄0).(4.5)

Now, we show a process for obtaining αn−1 and βn−1 using the recurrences (4.1)-(4.3) and
the orthogonality conditions (4.5). For determining αn−1, it follows from (4.2) that the
inner product of Ānr̄0 and rn is computed as

(Ānr̄0, rn) = (Ānr̄0, rn−1) − αn−1(Ānr̄0, Apn−1).

51

Since Ānr̄0 belongs to ĀKn(Ā, r̄0), it follows (Ānr̄0, rn) = 0 from the conditions (4.5).
Hence, we obtain

αn−1 =
(Ānr̄0, rn−1)

(Ānr̄0, Apn−1)
.(4.6)

Next, for determining βn−1 it follows from (4.3) that the inner product of Ānr̄0 and
Apn is computed as

(Ānr̄0, Apn) = (Ānr̄0, Arn) + βn−1(Ānr̄0, Apn−1).

From the conditions (4.5) it follows (Ānr̄0, Apn) = 0, thus we obtain

βn−1 = − (Ānr̄0, Arn)
(Ānr̄0, Apn−1)

= −αn−1
(Ānr̄0, Arn)
(Ānr̄0, rn−1)

.(4.7)

Here, let us consider obtaining practical formulas for αn−1 and βn−1 from (4.6) and (4.7).
Note that from the recurrences (4.1)-(4.3) two vectors Ār̄n−1 and Āp̄n−1 can be written as

Ār̄n−1 = c̄n−1Ā
nr̄0 + Āz̄1, Āz̄1 ∈ ĀKn−1(Ā, r̄0),(4.8)

Āp̄n−1 = c̄n−1Ā
nr̄0 + Āz̄2, Āz̄2 ∈ ĀKn−1(Ā, r̄0),(4.9)

where cn−1 = (−1)n−1∏n−2
i=0 αi. Then, from (4.8), (4.9), and the conditions (4.5), the

formula αn−1 in (4.6) can be rewritten by

αn−1 =
(Ār̄n−1, rn−1) − (Āz̄1, rn−1)

(Āp̄n−1, Apn−1) − (Āz̄2, Apn−1)
=

(Ār̄n−1, rn−1)
(Āp̄n−1, Apn−1)

.(4.10)

Similarly, the formula βn−1 in (4.7) can be rewritten by

βn−1 =
(Ār̄n, rn)

(Ār̄n−1, rn−1)
.(4.11)

Finally, we give an update formula of the nth approximate solution xn. From the relation
(4.2), and recall rn = b − Axn, we obtain

xn = xn−1 + αn−1pn−1.(4.12)

From (4.1)-(4.3) and (4.10)-(4.12), the algorithm of COCR is obtained as follows:

Algorithm 4.1: COCR method

x0 is an initial guess, r0 = b − Ax0,

set p−1 = 0, β−1 = 0,

for n = 0, 1, . . . ,until ‖rn‖ ≤ ε‖b‖ do:
pn = rn + βn−1pn−1,

(Apn = Arn + βn−1Apn−1,)

αn =
(r̄n, Arn)

(Āp̄n, Apn)
,

xn+1 = xn + αnpn,

rn+1 = rn − αnApn,

βn =
(r̄n+1, Arn+1)

(r̄n, Arn)
.

end

52

When COCR is applied to the linear systems K−1
1 AK−T

1 x̃ = K−1
1 b, the preconditioned

COCR can be obtained by the following rewrites:

x̃n ⇒ K1xn, p̃n ⇒ KT
1 pn, r̃n ⇒ K−1

1 rn,

Then, we have preconditioend COCR method.

Algorithm 4.2: Preconditioned COCR method

x0 is an initial guess, r0 = b − Ax0,

set p−1 = 0, β−1 = 0,

for n = 0, 1, . . . ,until ‖rn‖ ≤ ε‖b‖ do:
pn = K−1rn + βn−1pn−1,

(Apn = AK−1rn + βn−1Apn−1,)

αn =
(K̄−1r̄n, AK−1rn)
(Āp̄n, K−1Apn)

,

xn+1 = xn + αnpn,

rn+1 = rn − αnApn,

(K−1rn+1 = K−1rn − αnK−1Apn,)

βn =
(K̄−1r̄n+1, AK−1rn+1)

(K̄−1r̄n, AK−1rn)
.

end

It follows from Algorithm 4.1 that we obtain the three results: first, it is clear that COCR
is equivalent to CR when A is real symmetric, and thus COCR can be considered as an
extension of CR for symmetric linear systems to complex symmetric ones; second, similar
to COCG, COCR may break down, i.e., (Āp̄n, Apn) = 0 or (r̄n, Arn) = 0 with rn �= 0.
On the other hand, it is possible for QMR to evade such breakdowns by using look-ahead
strategy [41, §4]; third, the following theorem is obtained:

Theorem 4.2.1 If breakdown does not occur, iterates of COCR satisfy

(r̄i, Arj) = 0 for i �= j,(4.13)
(Āp̄i, Apj) = 0 for i �= j.(4.14)

Proof. For the proof of (4.13) and (4.14), it is sufficient to consider the case j < i, and
the proof is given by induction. Since the trivial case is obvious, we assume that properties
(4.13) and (4.14) hold for j < i ≤ k. Then, we show

(r̄k+1, Arj) = 0,(4.15)
(Āp̄k+1, Apj) = 0.(4.16)

First, we show (4.15). For the case j < k it follows from the assumption that

(r̄k+1, Arj) = (r̄k, Arj) − αk(Āp̄k, Arj)
= −αk(Āp̄k, Arj)
= −αk(Āp̄k, Apj − βj−1Apj−1) = 0.

53

For the case j = k, from the formula of αk we obtain

(r̄k+1, Ark) = (r̄k, Ark) − αk(Āp̄k, Ark)
= (r̄k, Ark) − αk(Āp̄k, Apk − βk−1Apk−1)
= (r̄k, Ark) − αk(Āp̄k, Apk)
= 0.

Next, we show (4.16). For the case j < k it follows from the first result of the proof that

(Āp̄k+1, Apj) = (Ār̄k+1 + β̄kĀp̄k, Apj) = (Ār̄k+1, Apj) =
1
αj

(Ār̄k+1, rj − rj+1) = 0.

For the case j = k, we obtain

(Āp̄k+1, Apk) = (Ār̄k+1, Apk) + βk(Āp̄k, Apk)

=
1
αk

(Ār̄k+1, rk − rk+1) + βk(Āp̄k, Apk)

= − 1
αk

(Ār̄k+1, rk+1) + βk(Āp̄k, Apk)

= 0

from the formulas of αk and βk. �

Since Algorithm 4.1 satisfies a conjugate A-orthogonality property (4.13) and it is similar
to the algorithm of CR, we named it Conjugate A-Orthogonal Conjugate Residual (COCR)
method. The computational costs for QMR, COCG, and COCR at each iteration step are
shown in Table 4.1. In COCR, four AXPYs are required for Algorithm 4.1 and five for
Algorithm 4.2.

Table 4.1. Summary of operations per iteration step, where AXPY: ax + y.
Inner Matrix-Vector Preconditioner

Method Product AXPY Product Solve
QMR 2 6 1 1
COCG 2 3 1 1
COCR 2 4 or 5 1 1

At the end of this subsection, let us consider another set of formulas for αn and βn in
Algorithm 4.1. From (4.13) and (4.14), it is easily verified that αn = (Āp̄n, rn)/(Āp̄n, Apn)
and βn = −(Āp̄n, Arn+1)/(Āp̄n, Apn). This set of formulas leads to the algorithm of
BiCGCR, but causes one more inner product per iteration step.

A derivation based on conjugate A-orthogonalization process

We give another derivation of COCR. First, we introduce a conjugate A-orthogonalization
process. Then, we show that the COCR method is also derived from the process. Sim-
ilar to the complex symmetric Lanczos process, conjugate A-orthogonalization process of
Kn(A, r0) and Kn(Ā, r̄0) is given below.

54

Algorithm 4.3: Conjugate A-orthogonalization process

set v0 = r0 = b − Ax0,(4.17)
set t0,0 = (Āv̄0, Av0)/(v̄0, Av0),
set v1 = −α0(Av0 − t0,0v0),(4.18)
for n = 1, 2, . . . do:

tn−1,n = (Āv̄n−1, Avn)/(v̄n−1, Avn−1),
tn,n = (Āv̄n, Avn)/(v̄n, Avn),
vn+1 = −αn(Avn − tn,nvn − tn−1,nvn−1).(4.19)

end

where the scalar parameters α0, . . . , αn are not determined at this point, and these are used
as a condition for deriving approximate solutions from residual vectors. From Algorithm
4.3, it is clear that if breakdown does not occur, the vector sequences v0, v1, . . . satisfy the
following conjugate A-orthogonality property:

(v̄i, Avj) = 0 for i �= j.

Now, let us consider generating the nth approximate solution xn for Ax = b and x̄n

for Āx̄ = b̄ over the following affine spaces:

xn := x0 + zn, zn ∈ Kn(A, r0),(4.20)
x̄n := x̄0 + z̄n, z̄n ∈ Kn(Ā, r̄0).

Then, the nth corresponding residual vectors rn and r̄n are given by

rn := b − Axn = r0 − Azn, rn ∈ Kn+1(A, r0),(4.21)
r̄n := b̄ − Āx̄n = r̄0 − Āz̄n, r̄n ∈ Kn+1(Ā, r̄0).(4.22)

Since vn of (4.19) is in Kn+1(A, r0) and v̄n of (4.19) is in Kn+1(Ā, r̄0), we can use vn, v̄n

as the nth residual vectors, rn of (4.21) and r̄n of (4.22), respectively. Then, it follows from
the formula (4.19) that we obtain

rn+1 = −αn(Arn − tn,nrn − tn−1,nrn−1),(4.23)
r̄n+1 = −ᾱn(Ār̄n − t̄n,nr̄n − t̄n−1,nr̄n−1),(4.24)

where tn−1,n = (Ār̄n−1, Arn)/(r̄n−1, Arn−1) and tn,n = (Ār̄n, Arn)/(r̄n, Arn). Substitut-
ing (4.21) and (4.22) into (4.23) and (4.24) respectively, the residual vectors are computed
as follows:

rn+1 = αn(tn,n + tn−1,n)r0 − αnA(rn + tn,nzn + tn−1,nzn−1),(4.25)
r̄n+1 = ᾱn(t̄n,n + t̄n−1,n)r̄0 − ᾱnĀ(r̄n + t̄n,nz̄n + t̄n−1,nz̄n−1).

Comparing the coefficient of r0 in (4.21) with the one of r0 in (4.25), αn must satisfy

αn(tn,n + tn−1,n) = 1, n ≥ 1(4.26)

to derive an update formula of the approximate solution xn from the information of rn.

55

For the special case n = 0, from (4.18), (4.21), (4.22) it follows that

r1 = r0 − Az1 = −α0(Ar0 − t0,0r0),(4.27)
r̄1 = r̄0 − Āz̄1 = −ᾱ0(Ār̄0 − t̄0,0r̄0),(4.28)

and thus α0 satisfies

α0 =
1

t0,0
=

(r̄0, Ar0)
(Ār̄0, Ar0)

.(4.29)

Now, we can compute the residual vectors of COCR by using recurrence relations (4.23)-
(4.24), and (4.26)-(4.29).

Here, let us give a property of this process. From Algorithm 4.3 it is clear that the
sequences r0, r1, . . . satisfy the following conjugate A-orthogonality property:

(r̄i, Arj) = 0 for i �= j.(4.30)

Next, we consider an efficient way to compute the residual vectors rn by introducing
two auxiliary vectors, and we give a formula for updating the approximate solution xn. Let
us define auxiliary vectors pn, p̄n as

pn :=
zn+1 − zn

αn
, p̄n :=

z̄n+1 − z̄n

ᾱn
.(4.31)

Multiplying left and right side of (4.31) by −αnA and −ᾱnĀ respectively, and from the
definitions (4.21) and (4.22) it follows that

rn+1 = rn − αnApn, r̄n+1 = r̄n − ᾱnĀp̄n.(4.32)

Substituting the relation (4.26) into tn,n of (4.23) and (4.24), then the recurrence relations
(4.23) and (4.24) can be written as

rn+1 − rn = −αnArn − αntn−1,n(rn − rn−1),(4.33)
r̄n+1 − r̄n = −ᾱnĀr̄n − ᾱnt̄n−1,n(r̄n − r̄n−1).(4.34)

From (4.32) it follows that rn+1 − rn = −αnApn, r̄n+1 − r̄n = −ᾱnĀp̄n, and thus substi-
tuting these relations into (4.33) and (4.34) respectively, we obtain

pn = rn − αn−1tn−1,npn−1, p̄n = r̄n − ᾱn−1t̄n−1,np̄n−1.(4.35)

From the inner product of Ār̄n+1 and (4.23), and using (4.30) and (Ār̄n, Arn−1) = (Ār̄n−1, Arn),
it follows that

αn = −(r̄n+1, Arn+1)
(Ār̄n+1, Arn)

.(4.36)

Substituting (4.36) into (4.35), we obtain

pn = rn + βn−1pn−1, p̄n = r̄n + β̄n−1p̄n−1,(4.37)

where βn−1 = (r̄n, Arn)/(r̄n−1, Arn−1). Comparing (4.27) and (4.28) with (4.37), we
obtain p0 = r0 and p̄0 = r̄0. Here, we show that αn satisfies the following relation:

αn =
1

tn,n + tn−1,n
=

(r̄n, Arn)
(Āp̄n, Apn)

.(4.38)

56

From (4.26) it is clear that the first equation of (4.38) is obtained. Next, we show the
second equality of (4.38). From (4.35) it follows that

(r̄n, Arn)
(Āp̄n, Apn)

=
(r̄n, Arn)

(Ār̄n, Apn) + βn−1(Āp̄n−1, Apn)

=
1

(Ār̄n,Arn)
(r̄n,Arn) + βn−1

(Ār̄n,Arn−1)
(r̄n,Arn) + βn−1

(Āp̄n−1,Apn)

(r̄n,Arn)

=
1

tn,n + tn−1,n
,

where we used the relation (Āp̄n−1, Apn) = 0 because

(Āp̄n−1, Apn) =
1
αn

(Āp̄n−1, rn) − 1
αn

(Āp̄n−1, rn+1) = 0,

where (Āp̄n−1, rn) = (Āp̄n−1, rn+1) = 0 from p̄n−1 ∈ span{r̄0, . . . , r̄n−1} and the conjugate
A-orthogonality property (4.30). For computing the approximate solutions, it follows from
the relation between (4.20) and (4.31) that

xn+1 = xn + αnpn.(4.39)

From the relations (4.27)-(4.29), (4.32), and (4.37)-(4.39), we obtain the COCR method.

A derivation of COCR in matrix form

Here, we derive the COCR method by using a matrix form of Algorithm 4.3. Let r0 be the
initial residual vector. Then, Algorithm 4.3 can be expressed in the following matrix form:

A [r0, r1, . . . , rn−1]︸ ︷︷ ︸
Rn

= [r0, r1, . . . , rn−1, rn]︸ ︷︷ ︸
Rn+1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

t0,0 t0,1

−α−1
0 t1,1

. . .

−α−1
1

. . . tn−2,n−1

. . . tn−1,n−1

−α−1
n−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where tk−1,k = (Ār̄k−1,Ark)
(r̄k−1,Ark−1) and tk,k = (Ār̄k,Ark)

(r̄k,Ark) . From the above matrix form, we obtain

ARn = Rn+1Tn+1,n.(4.40)

Since the matrix Rn is generated via Algorithm 4.3, it is clear that RT
nARn = Dn, where

Dn is a diagonal matrix of order n. Since the scalar parameters α0, . . . , αn−1 still remain
unknown. We show that if we determine the parameters such that approximate solutions
x0, . . . ,xn−1 can be extracted from information of r0, . . . , rn−1, then we obtain the desired
algorithm of the COCR method. Let Xn be a matrix with columns [x0, . . . ,xn−1] and 1
be (1, . . . , 1)T. Then we can connect Rn and Xn in the following form:

Rn := b1T
n − AXn = [b − Ax0, b − Ax1, . . . , b − Axn−1].(4.41)

57

From the above definition, we can regard the ith column of Rn as the ith residual vector.
Substituting (4.41) into (4.40), it follows that

ARn = (b1T
n+1 − AXn+1)Tn+1,n.

Then, we obtain

Rn = (x1T
n+1 − Xn+1)Tn+1,n,

where x is the exact solution of the linear system Ax = b. Hence, to extract Xn from Rn,
we need the following condition:

x1T
n+1Tn+1,n = On.

This leads to

α−1
0 = t0,0,

α−1
k = tk,k + tk−1,k, 1 ≤ k ≤ n − 1.

Substituting the above recurrence into Tn+1,n, we have

Tn+1,n =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

α−1
0 t0,1

−α−1
0 α−1

1 − t0,1
. . .

−α−1
1

. . . tn−2,n−1

. . . α−1
n−1 − tn−2,n−1

−α−1
n−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Then, Tn+1,n can be factorized as follows:

Tn+1,n =

⎛
⎜⎜⎜⎜⎝

1
−1

. . .

. . . 1
−1

⎞
⎟⎟⎟⎟⎠
⎛
⎜⎝

α−1
0

. . .
α−1

n−1

⎞
⎟⎠
⎛
⎜⎜⎜⎜⎝

1 α0t0,1

1
. . .
. . . αn−2tn−2,n−1

1

⎞
⎟⎟⎟⎟⎠

= B
(L)
n+1,nΩ−1

n B(U)
n .

From (4.40) and the above factorization, we obtain

ARn = Rn+1Tn+1,n = Rn+1B
(L)
n+1,nΩ−1

n B(U)
n .(4.42)

Here, we introduce Pn := Rn(B(U)
n)−1. Then from (4.42), we obtain

APn = ARn(B(U)
n)−1 = Rn+1B

(L)
n+1,nΩ−1

n .(4.43)

The above matrix form are equivalent to the following recurrences:

rk = rk−1 − αk−1Apk−1, 1 ≤ k ≤ n.(4.44)

58

From Pn = Rn(B(U)
n)−1 it follows that

pk = rk + βk−1pk−1, 1 ≤ k ≤ n,(4.45)

where βk−1 := −αk−1tk−1,k. Here, we give the computational formula of approximate
solution. From (4.43), it follows that

APn = Rn+1B
(L)
n+1,nΩ−1

n

= (b1T − AXn+1)B
(L)
n+1,nΩ−1

n

= −AXn+1B
(L)
n+1,nΩ−1

n .

Thus, we obtain

PnΩn = Xn+1(−B
(L)
n+1,n),

and it is equivalent to

xk = xk−1 + αk−1pk−1, 1 ≤ k ≤ n.(4.46)

Now, we give more practical computational formulas of αk and βk. From (4.40), it follows
that

(AR)TnARn = RT
nARn+1Tn+1,n.

From the (k+1,k) entry of the above relation, we have (Ār̄k, Ark−1) = −α−1
k−1(r̄k, Ark).

Thus from βk−1 = −αk−1tk−1,k, we obtain

βk = −αktk,k+1

=
(r̄k+1, Ark+1)
(Ār̄k+1, Ark)

· (Ār̄k, Ark+1)
(r̄k, Ark)

=
(r̄k+1, Ark+1)

(r̄k, Ark)
.(4.47)

We used the relation (r̄k, Ark+1) = (r̄k+1, Ark) since rn is written as the product of matrix
polynomial and initial residual vector, i.e.,

(r̄k, Ark+1) = (R̄k(A)r̄0, ARk+1(A)r0)
= (R̄k+1(A)R̄k(A)r̄0, Ar0)
= (R̄k(A)R̄k+1(A)r̄0, Ar0)
= (R̄k+1(A)r̄0, ARk(A)r0)
= (r̄k+1, Ark).

From (4.43) and recalling Pn = Rn(B(U)
n)−1, it follow that

(APn)TAPn = (APn)TRn+1B
(L)
n+1,nΩ−1

n = (B(U)
n)−TRT

nARn+1B
(L)
n+1,nΩ−1

n .

This leads to

(APn)TAPn =

⎛
⎜⎝ d0

∗ . . .
∗ ∗ dn−1

⎞
⎟⎠,

59

where dk = (rk, rk)α−1
k . Thus, we obtain

αk =
(r̄k, Ark)

(Āp̄k, Apk)
.(4.48)

Moreover, since (APn)TAPn is complex symmetric, (APn)TAPn = diag(d0, . . . , dn−1). Thus
pi and pj are conjugate A2-orthogonal, i.e.,

(Āp̄i, Apj) = 0 for i �= j.

From (4.44)-(4.48), we obtain the algorithm of COCR.

4.2.3 Relationship between COCR and Bi-CR

In this subsection, we show that if matrix A is complex symmetric, Bi-CR with the choice
r∗

0 = r̄0 reduces to COCR. It follows from Algorithm 3.4 that we have the following recur-
rences:

pn = rn + βn−1pn−1,

p∗
n = r∗

n + β̄n−1p
∗
n−1,

(Apn = Arn + βn−1Apn−1,)

αn =
(r∗

n, Arn)
(AHp∗

n, Apn)
,

xn+1 = xn + αnpn,

rn+1 = rn − αnApn,

r∗
n+1 = r∗

n − ᾱnAHp∗
n,

βn =
(r∗

n+1, Arn+1)
(r∗

n, Arn)
.

If matrix A is complex symmetric, then we have the relation AH = Ā. On the other hand,
the choice r∗

0 = r̄0 leads to p∗
n = p̄n and r∗

n = r̄n. Hence, from the above recurrences, it
follow that

pn = rn + βn−1pn−1,

p̄n = r̄n + β̄n−1p̄n−1,(4.49)
(Apn = Arn + βn−1Apn−1,)

αn =
(r̄n, Arn)

(Āp̄n, Apn)
,

xn+1 = xn + αnpn,

rn+1 = rn − αnApn,

r̄n+1 = r̄n − ᾱnĀp̄n,(4.50)

βn =
(r̄n+1, Arn+1)

(r̄n, Arn)
.

From the above, the recurrences (4.49) and (4.50) can be deleted since p̄n and r̄n are
readily obtained by pn and rn. Hence, we can see that the resulting algorithm is the same
as Algorithm 4.1 and that Bi-CR is regarded as an extension of COCR.

60

4.3 Numerical experiments

In this section, we report some numerical examples with QMR, COCG, and COCR. We
evaluate both methods in aspects of the number of iterations (Its) and log10 of true relative
residual 2-norm (TRR) defined as log10 ‖b − Axn‖/‖b‖. All tests were performed on an
ALPHA work station with a 750MHz processor using double precision arithmetic. Codes
were written in Fortran 77 and compiled with the optimization option -O4. In all cases the
iteration was started with x0 = 0, and the stopping criterion was ‖rn‖/‖b‖ ≤ 10−6. The
preconditioner was IC(0) [59]. For the complex symmetric structure of A, IC(0) produces
LDLT. If the diagonal matrix D and the lower triangular matrix L are nonsingular, then
the preconditioned matrix D−1/2L−1AL−TD−1/2 is also a nonsingular complex symmetric
matrix. Thus, in this case, we can use LDLT as a preconditioner. The convergence plots
show log10 of the relative residual 2-norm, log10 ‖rn‖/‖b‖, (on the vertical axis) versus Its
(on the horizontal axis).

� Example 1

In the first numerical example, we consider problems from NEP collection [3]. We chose
two matrices from electrical engineering (DWG961B) and quantum chemistry (QC2534).
Numerical results for each test problem are given in Table 4.2. The right-hand side b was
chosen as (1 + i, . . . , 1 + i)T.

Table 4.2. Numerical results for Example 1, where N : order of matrix, Its: number of
iterations, TRR: log10 of final true relative residual 2-norm.

Its TRR
Matrix N QMR COCG COCR QMR COCG COCR

DWG961B 961 1523 1365 1388 -6.00 -6.10 -6.05
QC2534 2534 1008 628 403 -6.14 -6.06 -6.41

Convergence histories for DWG961B and QC2534 are shown in Fig. 4.1 and Fig. 4.2.
We see from Fig. 4.1 that COCG and COCR gave similar convergence behavior, and the
residual norm of COCR was often less than that of COCG and QMR at each iteration step.
On the other hand, QMR often gave much smoother convergence behavior than COCG and
COCR; however QMR required a larger number of iterations than the other two methods.
Fig. 4.2 shows that COCR converged considerably faster than COCG and QMR. In the
two cases, the three methods gave almost the same accuracy on TRR at each final iteration
step (see Table 4.2).

� Example 2

In the second numerical example, we consider a complex symmetric linear system arising
from the 200× 200 central difference discretization of the Helmholtz equation described in
[6]: uxx + uyy + σ2u = 0 over [0, π] × [0, π], with Dirichlet condition u = 0 along y = π,

Neumann conditions ux = i
√

σ2 − 1
4 cos(y

2) along x = 0 and uy = 0 along y = 0, and

radiation condition ux − i
√

σ2 − 1
4u = 0 along x = π. This leads to a linear system with

201 × 200 unknowns. Here, we consider the two cases of σ = 2.0, 4.0. These numerical
results are shown in Fig. 4.3 and Fig. 4.4.

61

Table 4.3. Numerical results for Example 2, where N : order of matrix, Its: number of
iterations, TRR: log10 of final true relative residual 2-norm.

Its TRR
Matrix N QMR COCG COCR QMR COCG COCR
σ = 2.0 40200 276 288 278 -6.01 -6.03 -6.04
σ = 4.0 40200 453 473 458 -6.06 -6.01 -6.01

From Fig. 4.3 and Fig. 4.4 we observe that COCR gave smoother convergence behavior
than COCG in the early phase, and then the two methods showed similar convergence
behavior. We also see that QMR has an advantage over COCG and COCR in that its
residual 2-norm decreased almost monotonically. In the two cases (σ = 2.0, 4.0), they gave
almost the same accuracy on TRR at each final iteration step (see Table 4.3).

4.4 Concluding remarks

In this chapter, first, we observed a way for obtaining CG, CR, and COCG. Second,
we derived the algorithm of COCR from the observation and showed some orthogonal-
ity properties. We gave other derivations of COCR from matrix form of a conjugate A-
orthogonalization process, and the algorithm of Bi-CR. From numerical examples we have
learned that COCR tends to give smoother convergence behavior than COCG, and it some-
times converges faster than QMR in terms of the number of iterations. Hence, we conclude
that COCR as well as QMR and COCG may become a useful tool for solving complex
symmetric linear systems.

62

-6

-5

-4

-3

-2

-1

0

1

2

3

0 200 400 600 800 1000 1200 1400

’QMR’
’COCG’
’COCR’

Figure 4.1: Residual 2-norm histories for Example 1 (DW961B).

-6

-4

-2

0

2

4

6

0 200 400 600 800 1000

’QMR’
’COCG’
’COCR’

Figure 4.2: Residual 2-norm histories for Example 1 (QC2534).

-6

-5

-4

-3

-2

-1

0

1

2

3

0 50 100 150 200 250 300 350 400 450 500

’QMR’
’COCG’
’COCR’

Figure 4.3: Residual 2-norm histories for Example 2 (σ = 2.0).

-6

-5

-4

-3

-2

-1

0

1

2

3

0 50 100 150 200 250 300 350 400 450 500

’QMR’
’COCG’
’COCR’

Figure 4.4: Residual 2-norm histories for Example 2 (σ = 4.0).

63

Chapter 5

CRS: a conjugate residual squared
method

In chapter 3, we have learned that Bi-CR often gives smoother convergence behavior than
Bi-CG. However, Bi-CR needs one matrix-vector multiplication and one transposed matrix-
vector multiplication even though the operations increase only one dimension of Krylov
subspace for updating the approximate solution. In this chapter, to improve the perfor-
mance of Bi-CR, we give a general framework of the product-type methods and then we
propose a more efficient algorithm by defining a residual vector as the product of the Bi-
CR polynomial squared and the initial residual vector. The algorithm is referred to as a
Conjugate Residual Squared (CRS) method. The expected convergence rate is about twice
that of Bi-CR.

5.1 A general framework of product-type methods based on
Bi-CR

As we saw in chapter 3, the residual vector of Bi-CR at the nth iteration step is characterized
by Rn(λ) and the initial residual vector r0:

rBiCR
n = Rn(A)r0.

Similar to the product-type methods based on Bi-CG described in chapter 2, we consider
the product of a polynomial of degree n and the nth residual vector of Bi-CR:

rn = Hn(A)rBiCR
n = Hn(A)Rn(A)r0.

The choice of the polynomial Hn plays an important role in improving the convergence
behavior of Bi-CR. Hence, we define Hn such that it meets the following requirements:

(1) The recurrence for computing residual vectors of the product-type methods are given
by the determination of Hn.

(2) Two parameters αn, βn in the polynomial Rn are equivalent to those used in the
Bi-CR method, and they are readily computed by the nth residual vector.

(3) Hn needs to satisfy short-term recurrences for low computational costs per iteration
and low memory requirements.

64

(4) Parameters in Hn should be chosen so that they accelerate and stabilize the conver-
gence behavior of Bi-CR.

Restructuring of residual polynomials

To meet the previous requirements, let us introduce three-term recurrences relations similar
to Lanczos polynomial (2.21)-(2.23):

H0(λ) = 1,(5.1)
H1(λ) = (1 − ζ0λ)H0(λ),(5.2)
Hn(λ) = (1 + ηn−1 − ζn−1λ)Hn−1(λ) − ηn−1Hn−2(λ), n = 2, 3, . . .(5.3)

Here, we transform the above three-term recurrences into coupled two-term ones to give
useful update formulas for the residual vector. Let Gn−1 be a polynomial of degree n − 1
defined by

Gn−1(λ) :=
Hn−1(λ) − Hn(λ)

λ
.

Then, rewriting the three-term recurrence relations (5.3) as

Hn(λ) − Hn−1(λ) = −ζn−1λHn−1(λ) + ηn−1(Hn−1(λ) − Hn−2(λ))

and using (5.1)-(5.3), we obtain the following recurrences:

H0(λ) = 1, G0(λ) = ζ0,

Hn(λ) = Hn−1(λ) − λGn−1(λ),
Gn(λ) = ζnHn(λ) + ηnGn−1(λ), n = 1, 2, . . .

Next, by using the above recurrences, we give update formulas for the residual vector rn.

Recurrence formulas for iterates

Since Rn and Hn have been already given, recurrence relations for updating rn can be
obtained. We make use of a new set of recurrence relations among the products of polyno-
mials HnRn, HnRn+1,
λGn−1Rn+1, HnPn, λHnPn+1, λGnPn, and GnRn+1 in order to compute the product of
polynomials HnRn.

Hn+1Rn+1 = HnRn+1 − ηnλGn−1Rn+1 − ζnλHnRn+1(5.4)
= HnRn − αnλHnPn − λGnRn+1,(5.5)

HnRn+1 = HnRn − αnλHnPn,(5.6)
λGnRn+2 = HnRn+1 − Hn+1Rn+1(5.7)

−αn+1λHnPn+1 + αn+1λHn+1Pn+1,

Hn+1Pn+1 = Hn+1Rn+1 + βnHnPn − βnλGnPn,(5.8)
λHnPn+1 = λHnRn+1 + βnλHnPn,(5.9)

λGnPn = ζnλHnPn(5.10)
+ηn(Hn−1Rn − HnRn + βn−1λGn−1Pn−1),

GnRn+1 = ζnHnRn + ηnGn−1Rn − αnλGnPn.(5.11)

65

Let us define new auxiliary vectors as

tn := Hn(A)rBiCR
n+1 , yn := AGn−1(A)rBiCR

n+1 ,

pn := Hn(A)pBiCR
n , wn := AHn(A)pBiCR

n+1 ,

un := AGn(A)pBiCR
n , zn := Gn(A)rBiCR

n+1 .

Then, we have new recurrence formulas from (5.4)-(5.11):

rn+1 = tn − ηnyn − ζnAtn(5.12)
= rn − αnApn − Azn,(5.13)

tn = rn − αnApn,

yn+1 = tn − rn+1 − αn+1wn + αn+1Apn+1,

pn+1 = rn+1 + βn(pn − un),
wn = Atn + βnApn,

un = ζnApn + ηn(tn−1 − rn + βn−1un−1),
zn = ζnrn + ηnzn−1 − αnun.

From (5.13), the following new formula for the approximate solution can be obtained:

xn+1 = xn + αnpn + zn.

The recurrence (5.12) is still of great importance to achieve local minimization of rn+1 by
the two parameters ζn, ηn.

Computational formulas for αn, βn

Since the coefficient of the highest-order term of Hn is (−1)n∏n−1
i=0 ζi, we obtain

(AHr∗
0, rn) = (AHH̄n(AT)r∗

0, r
BiCR
n) =

(
(−1)n

n−1∏
i=0

ζi

)
((AH)n+1r∗

0, r
BiCR
n),

(AHr∗
0, Apn) = (AHH̄n(AT)r∗

0, ApBiCR
n) =

(
(−1)n

n−1∏
i=0

ζi

)
((AH)n+1r∗

0, ApBiCR
n).

Thus, it follows from (3.29) and (3.31) that

αn =
(AHr∗

0, rn)
(AHr∗

0, Apn)
, βn =

αn

ζn
· (AHr∗

0, rn+1)
(AHr∗

0, rn)
.

Similar to the product-type methods based on Bi-CG, we can derive several product-
type methods based on Bi-CR by the choice of the two parameters ζn, ηn. The choice and
these names are given in Table 5.1.

Table 5.1. The choice for the product-type methods based on Bi-CR.

CRS ζn = αn, ηn =
βn−1

αn−1
αn ⇐⇒ Hn = Rn

Bi-CRSTAB ζn = arg min
ζn∈C

‖rn+1‖, ηn = 0

Bi-CRSTAB2 ζn, ηn = arg min
ζn,ηn∈C

‖rn+1‖ (ηn = 0 at even iterations)

GPBi-CR ζn, ηn = arg min
ζn,ηn∈C

‖rn+1‖

66

5.2 Definition of the residual vector of CRS

By the choice for CRS given in Table 5.1, we have the residual vector of CRS as the product
of the Bi-CR polynomial squared and an initial residual vector, i.e.

rn := Rn(A)2r0.(5.14)

Since Rn(A)r0 is the nth residual vector of Bi-CR (3.21), rn can be also written as the
product of Bi-CR polynomial and rBiCR

n :

rn = Rn(A)rBiCR
n .

If Bi-CR gives better convergence behavior, the matrix 2-norm of Rn(A) will decrease faster.
Hence, we can expect that the value of ‖rn‖ converges to zero faster than that of Bi-CR.

Here, we give more quantitative evaluation of convergence for CRS and Bi-CR. The
residual 2-norm of Bi-CR is bounded by ‖Rn(A)‖ · ‖r0‖. On the other hand, the residual
2-norm of CRS is bounded by ‖Rn(A)‖2 · ‖r0‖. Hence, assuming ‖Rn(A)‖ ≤ 1, we can
expect that the convergence rate of CRS is about twice that of Bi-CR.

5.3 Recurrence formulas for CRS iterates

In this section, we give useful recurrence formulas for updating rn. From the definition
(5.14) and Bi-CR polynomial (3.22)-(3.24), we obtain the following recurrences:

Rn+1Rn+1 = RnRn+1 − αnλPnRn+1

= RnRn − αnλ(RnPn + PnRn+1),
Rn+1Pn+1 = Rn+1Rn+1 + βnPnRn+1,

PnRn+1 = PnRn − αnλPnPn,

λPn+1Pn+1 = λPn+1Rn+1 + βnλPn+1Pn

= λPn+1Rn+1 + βn(λRn+1Pn + βnλPnPn).

Here, we introduce auxiliary vector

en := PnRnr0, hn := PnRn+1r0, pn := PnPnr0.

Then, from the previous recurrences, we have the following formulas:

Apn = Aen + βn−1(Ahn−1 + βn−1Apn−1),
hn = en − αnApn,

rn+1 = rn − αnA(en + hn),
en+1 = rn+1 + βnhn.

The parameters αn and βn of CRS are mathematically equivalent to those of Bi-CR. Based
on the formulas given in (3.39), we see that αn and βn satisfy the following relations:

αn =
(rBiCR∗

n , ArBiCR
n)

(AHpBiCR∗
n , ApBiCR

n)
=

(R̄n(AT)r∗
0, ARn(A)r0)

(AHP̄n(AT)r∗
0, APn(A)r0)

=
(r∗

0, ARn(A)Rn(A)r0)
(r∗

0, A
2Pn(A)Pn(A)r0)

,

βn =
(rBiCR∗

n , ArBiCR
n)

(rBiCR∗
n+1 , ArBiCR

n+1)
=

(R̄n(AT)r∗
0, ARn(A)r0)

(R̄n+1(AT)r∗
0, ARn+1(A)r0)

=
(r∗

0, ARn(A)Rn(A)r0)
(r∗

0, ARn+1(A)Rn+1(A)r0)
.

67

Hence, the same values given in (3.39) can be generated by the residual vector of CRS. It fol-
lows from the above results and the definitions rn = Rn(A)Rn(A)r0, pn = Pn(A)Pn(A)r0

that we have

αn =
(r∗

0, Arn)
(r∗

0, A
2pn)

, βn =
(r∗

0, Arn)
(r∗

0, Arn+1)
.

We see from the computational formulas for αn and βn that they require four matrix vector
multiplications. Hence, to reduce the operations, we introduce the following recurrences:

Ahn = Aen − αnA2pn,

Aen+1 = Arn+1 + βnAhn.

Using the notation qn := Apn, dn := Aen, and fn := Ahn, we have

qn = dn + βn−1(fn−1 + βn−1qn−1),
fn = dn − αnAqn,

dn+1 = Arn+1 + βnfn.

By using the above recurrences, we can reduce two matrix vector multiplications per iter-
ation step. Finally, the residual vector and the approximate solution are written as

xn+1 = xn + αn(en + hn),
rn+1 = rn − αn(dn + fn).

From the above results, we obtain the algorithm of CRS below.

Algorithm 5.1: CRS method

x0 is an initial guess, r0 = b − Ax0,

choose r∗
0 (for example, r∗

0 = r0),
set e0 = r0, d0 = Ae0, β−1 = 0,

for n = 0, 1, . . . ,until ‖rn‖ ≤ ε‖b‖ do:
qn = dn + βn−1(fn−1 + βn−1qn−1),

αn =
(r∗

0, Arn)
(r∗

0, Aqn)
,

hn = en − αnqn,

fn = dn − αnAqn,

xn+1 = xn + αn(en + hn),
rn+1 = rn − αn(dn + fn),

βn =
(r∗

0, Arn+1)
(r∗

0, Arn)
,

en+1 = rn+1 + βnhn,

dn+1 = Arn+1 + βnfn.

end

We can see from Algorithm 5.1 that it requires two matrix-vector multiplications per iter-
ation step. Since the product-type methods based on Bi-CG such as CGS, Bi-CGSTAB,

68

and GPBi-CG also require two matrix-vector multiplications, we can say that CRS is a
practical algorithm in terms of operations.

When CRS is applied to the linear systems (2.15), a preconditioned CRS method is
obtained by the following rewrites:

x̃n ⇒ K2xn, h̃n ⇒ K−1
1 hn, ẽn ⇒ K−1

1 en, r̃∗
0 ⇒ K−H

1 r∗
0,

r̃n ⇒ K−1
1 rn, q̃n ⇒ K−1

1 qn, f̃n ⇒ K−1
1 fn, d̃n ⇒ K−1

1 dn.

The resulting algorithm is given as follows:

Algorithm 5.2: Preconditioned CRS method

x0 is an initial guess, r0 = b − Ax0,

choose r∗
0 (for example, r∗

0 = r0),
set e0 = r0, d0 = AK−1e0, β−1 = 0,

for n = 0, 1, . . . ,until ‖rn‖ ≤ ε‖b‖ do:
qn = dn + βn−1(fn−1 + βn−1qn−1),

αn =
(r∗

0, AK−1rn)
(r∗

0, AK−1qn)
,

hn = en − αnqn,

(K−1hn = K−1en − αnK−1qn,)
fn = dn − αnAK−1qn,

xn+1 = xn + αn(K−1en + K−1hn),
rn+1 = rn − αn(dn + fn),

βn =
(r∗

0, AK−1rn+1)
(r∗

0, AK−1rn)
,

en+1 = rn+1 + βnhn,

(K−1en+1 = K−1rn+1 + βnK−1hn,)
dn+1 = AK−1rn+1 + βnfn.

end

If we can easily use a transposed matrix-vector multiplication, then we can delete three
auxiliary vectors qn, fn, and dn from the Algorithm 5.1. Then, we have a simpler variant
of the CRS method.

Algorithm 5.3: Simpler CRS method

x0 is an initial guess, r0 = b − Ax0,

choose r∗
0 (for example, r∗

0 = r0),
set e0 = r0, d0 = Ae0, β−1 = 0,

for n = 0, 1, . . . ,until ‖rn‖ ≤ ε‖b‖ do:
pn = en + βn−1(hn−1 + βn−1pn−1),

αn =
(AHr∗

0, rn)
(AHr∗

0, Apn)
,

hn = en − αnApn,

69

xn+1 = xn + αn(en + hn),
rn+1 = rn − αn(dn + fn),

βn =
(AHr∗

0, rn+1)
(AHr∗

0, rn)
,

en+1 = rn+1 + βnhn.

end

The computational cost for CGS, CRS, and simpler CRS is given in Table 5.2. The differ-
ence between CGS and CRS is the number of AXPY. CRS requires 4 or 6 more additional
AXPYs. If matrix-vector multiplications are bottle-neck in operations per iteration, then
this factor is not a threat to the total computational cost per iteration. In such case, CGS
and CRS have almost the same computational cost. On the other hand, CGS and simpler
CRS require the same operations per iteration. If the transposed matrix-vector multiplica-
tion is readily available, a simpler CRS may be preferred because of the lower operations
than CRS.

Table 5.2. Summary of operations per iteration step.

Inner Matrix-Vector Preconditioner
Method Product AXPY Product Solve
CGS 2 8 2 2
CRS 2 10 or 12 2 2
Simpler CRS 2 8 2 2

5.4 Numerical experiments

In this section, we report the results of numerical experiments on a range of Matrix Market
problems from the Harwell-Boeing collection [26], the NEP collection [3], the SPARSKIT
collection [67], and Tim Davis’s collection [21]. The iterative solvers used in the experiments
are CGS and CRS, and we evaluate the two methods with respect to the number of iterations
(Its), computational time (Time), and log10 of the true relative residual 2-norm (TRR)
defined as log10 ‖b − Axn‖/|b‖. All experiments were performed on a work station with
a 2.0GHz Opteron processor 846 using double precision arithmetic. Codes were written
in Fortran 77 and compiled with g77 option -O3. In all cases the iteration was started
with x0 = 0 and r∗

0 = r0 in both methods, the right-hand side b was chosen as a vector
with random entries from -1 to 1, and the stopping criterion was ‖rn‖/‖b‖ ≤ 10−12. The
convergence histories show the number of iterations (on the horizontal axis) versus log10 of
the relative residual 2-norm, log10 ‖rn‖/‖b‖ (on the vertical axis).

Matrices in the experiments come from electronic circuit design (ADD20, ADD32,
MEMPLUS), electrical engineering (BFW782A), finite element modeling (CAVITY05, CAV
ITY10, FIDAP036), fluid dynamics (CDDE1, E20R0000, E30R0000), oil reservoir simula-
tion (ORSIRR1, ORSIRR2, ORSREG1, SHERMAN1, SHERMAN5), partial differential
equations (PDE2961), aeroelasticity (TOLS4000), and petroleum engineering (WATT1,
WATT2).

70

Table 5.3. Matrices, their sizes (N), and numerical results of CGS and CRS.

Its Time [sec] TRR
Matrix N CGS CRS CGS CRS CGS CRS

ADD20 2395 390 370 1.87E-1 1.83E-1 -12.39 -12.13
ADD32 4960 72 70 5.71E-2 5.74E-2 -12.12 -12.00
BFW782A 782 365 329 7.03E-2 6.46E-2 -10.23 -11.87
CAVITY05 1182 607 567 4.28E-1 4.08E-1 -9.69 -8.13
CAVITY10 2597 1177 878 2.24E 0 1.69E 0 -8.70 -11.46
CDDE1 961 147 116 1.88E-2 1.56E-2 -11.57 -12.00
E20R0000 4241 1851 1254 6.29E 0 4.29E 0 -7.00 -10.85
E30R0000 9661 2875 1970 2.37E 1 1.64E 1 -5.62 -10.72
FIDAP036 3079 6145 4719 8.83E 0 6.86E 0 -4.99 -9.94
MEMPLUS 17758 1357 1139 6.24E 0 5.52E 0 -9.65 -11.77
ORSIRR1 1030 1137 1030 2.03E-1 1.89E-1 -9.87 -10.58
ORSIRR2 886 890 786 1.37E-1 1.25E-1 -9.81 -12.06
ORSREG1 2205 348 317 1.27E-1 1.21E-1 -11.98 -11.98
PDE2961 2961 191 173 7.67E-2 7.41E-2 -11.79 -10.61
SHERMAN1 1000 521 500 6.62E-2 6.50E-2 -12.00 -12.02
SHERMAN5 3312 2059 1737 1.22E 0 1.08E 0 -6.86 -9.95
TOLS4000 4000 — — — — — —
WATT1 1856 485 470 1.52E-1 1.52E-1 -6.47 -12.04
WATT2 1856 903 *667 2.88E-1 *2.19E-1 -5.05 -6.64

Table 5.4. Matrices, their sizes (N), and numerical results of CGS and CRS with ILU(0).

Its Time [sec] TRR
Matrix N CGS CRS CGS CRS CGS CRS

ADD20 2395 170 151 1.55E-1 1.44E-1 -12.39 -11.99
ADD32 4960 34 34 5.65E-2 6.12E-2 -12.16 -12.04
BFW782A 782 85 85 3.25E-2 3.35E-2 -12.34 -12.25
CAVITY05 1182 123 98 1.83E-1 1.51E-1 -9.52 -11.61
CAVITY10 2597 186 181 9.26E-1 9.28E-1 -10.77 -11.57
CDDE1 961 36 37 9.02E-3 9.91E-3 -12.01 -12.38
E20R0000 4241 134 127 1.39E 0 1.34E 0 -10.04 -11.90
E30R0000 9661 257 212 6.08E 0 5.06E 0 -8.62 -10.39
FIDAP036 3079 152 160 5.69E-1 6.27E-1 -9.62 -11.89
MEMPLUS 17758 327 310 2.57E 0 3.60E 0 -9.60 -11.61
ORSIRR1 1030 47 46 1.72E-2 1.76E-2 -12.54 -12.63
ORSIRR2 886 47 47 1.47E-2 1.51E-2 -12.39 -11.99
ORSREG1 2205 53 53 3.88E-2 4.08E-2 -12.32 -12.42
PDE2961 2961 42 43 3.38E-2 3.74E-2 -12.29 -12.51
SHERMAN1 1000 41 41 9.74E-3 1.06E-2 -12.06 -12.12
SHERMAN5 3312 32 32 4.35E-2 4.65E-2 -12.46 -12.47
WATT1 1856 60 59 2.59E-2 2.75E-2 -12.18 -12.39
WATT2 1856 112 110 7.67E-2 6.14E-2 -4.52 -5.92

71

-12

-10

-8

-6

-4

-2

0

2

0 50 100 150 200 250 300 350 400 450

’CGS’
’CRS’

Figure 5.1: Residual 2-norm histories of CGS and CRS for ADD20.

-12

-10

-8

-6

-4

-2

0

2

4

6

0 100 200 300 400 500 600

’CGS’
’CRS’

Figure 5.2: Residual 2-norm histories of CGS and CRS for CAVITY05.

� Comparison of CGS and CRS

We evaluate the performance of CGS and CRS with no preconditioning. The numerical
results are shown in Table 5.3, where the result for TOLS4000 is not listed since CGS
diverged and CRS stagnated and the two methods did not generated approximate solutions
with the accuracy less than initial relative residual 2-norm.

Looking at Its, we see that CRS required only about 70-90% of the iteration steps of
CGS in CAVITY10, CDDE1, E20R0000, E30R0000, FIDAP036, MEMPLUS, ORSIRR2,
and SHERMAN5. However, CRS did not converge in WATT2. In the other problems, CGS
and CRS required almost the same number of iteration steps.

In terms of TIME, CRS took only about 70-90% of the iteration steps of CGS in
CAVITY10, CDDE1, E20R0000, E30R0000, FIDAP036, MEMPLUS, and SHERMAN5.
Since the computational cost per iteration of CRS is slightly larger than that of CGS, it
slightly increases the required cpu time per itaration even if the two methods need the same
iteration steps.

72

-12

-10

-8

-6

-4

-2

0

2

0 50 100 150 200

’PCGS’
’PCRS’

Figure 5.3: Residual 2-norm histories of CGS and CRS with ILU(0) for ADD20.

-12

-10

-8

-6

-4

-2

0

2

4

6

0 20 40 60 80 100 120 140

’PCGS’
’PCRS’

Figure 5.4: Residual 2-norm histories of CGS and CRS with ILU(0) for CAVITY05.

In terms of TRR, CRS tended to give approximate solutions with much higher accuracy.
Notably, in CAVITY10, MEMPLUS, ORSIRR2, and WATT1, each TRR of CRS was almost
the same as the stopping criterion. On the other hand, corresponding TRRs of CGS were
greater than -10. In CAVITY05 and PDE2961, TRRs of CGS were slightly better than
those of CRS.

Residual 2-norm histories of CGS and CRS for ADD20 and CAVITY05, and ones with
ILU(0) for ADD20 and CAVITY05 are shown in Figs. 5.1, and 5.2.

� Comparison of CGS and CRS with ILU(0) preconditioning

We evaluate the performance of CGS and CRS with ILU(0) preconditioning. The numerical
results are shown in Table 5.4, where the result for TOLS4000 is not listed since ILU(0)
caused breakdown.

With respect to Its and Time, CRS only required about 80% of the iteration steps
and computational time of CGS in CAVITY05, E30R0000, and WATT2. There was little

73

difference in the performance of CGS and CRS in other problems except TOLS4000, since
the preconditioner was quite effective in improving the convergence behavior. In terms
of TRR, TRRs of CRS were much better than those of CGS in CAVITY05, E30R0000,
FIDAP036, and MEMPLUS. In WATT2, TRRs of the two methods were extremely less
than the stopping criterion. Hence, we see from this case that CRS does not always give
an approximate solution close to stopping criterion. In other problems, the two methods
generated almost the same accuracy of the approximate solutions as the stopping criterion.

Residual 2-norm histories of Bi-CG and Bi-CR with ILU(0) preconditioning for ADD20,
CAVITY05 are shown in Figs. 5.3, and 5.4. In Fig. 5.3, CGS gave irregular convergence
behavior while CRS converged smoother and faster than CGS. In Fig. 5.4, CRS also showed
smoother convergence behavior in the initial phase than CGS.

� The Helmholtz equation

We consider the following boundary value problem:

uxx + uyy + σ2u = 0, (x, y) ∈ [0, π] × [0, π],

ux|x=0 = i
√

σ2 − 1
4 cos y

2 , Neumann Condition (1),

ux − i
√

σ2 − 1
4u|x=π = 0, Radiation Condition,

uy|y=0 = 0, Neumann Condition (2),
u|y=π = 0, Dirichlet Condition.

The above elliptic problem is known as the Helmholtz equation [6]. Here we show that the
approximate solution is obtained by solving sparse linear systems arising from the finite
difference discretization of the above equation. The first step is to choose approximate
formulas for the derivatives, we use the standard formula

uxx(x, y) ≈ 1
h2

{
u(x + h, y) − 2u(x, y) + u(x − h, y)

}
,

uyy(x, y) ≈ 1
h2

{
u(x, y + h) − 2u(x, y) + u(x, y + h)

}
.

Now, it is convenient to introduce an abbreviated notation ui,j = u(xi, yj). Then we obtain
five-point formula

uxx(xi, yj) + uyy(xi, yj) ≈ 1
h2

(ui+1,j + ui−1,j + ui,j+1 + ui,j−1 − 4ui,j).

If this approximation is made in without boundary condition, the result is

−ui+1,j − ui−1,j − ui,j+1 − ui,j−1 + (4 − h2σ2)ui,j = 0.(5.15)

The coefficient of this equation can be illustrated by a five-point star in which each point
correspond to the coefficient of u in the grid (Fig. 5.5). To be specific, we consider the
region is square (x, y) ∈ [0, π] × [0, π] and the grid has spacing h = π/2 (See Fig. 5.6). We
obtain a single linear equation of the form (5.15) for each of the six grid points. These six
equations are shown as follows:

−u2 − g4 − u4 − g1 + (4 − h2σ2)u1 = 0,

−u3 − u1 − u5 − g2 + (4 − h2σ2)u2 = 0,

−g5 − u2 − u6 − g3 + (4 − h2σ2)u3 = 0,(5.16)

74

Figure 5.5: Five-point star. Figure 5.6: Mesh points on the region.

−u5 − g6 − g8 − u1 + (4 − h2σ2)u4 = 0,

−u6 − u4 − g9 − u2 + (4 − h2σ2)u5 = 0,

−g7 − u5 − g10 − u3 + (4 − h2σ2)u3 = 0,

where u1 = u1,1, u2 = u2,1, u3 = u3,1, u4 = u2,1, u5 = u2,2, u6 = u2,3. Unknowns gk

for 1 ≤ k ≤ 10 can be computed by the four boundary conditions: first, from Neumann
Condition (2) we obtain g1, g2, and g3 below.

u4 − g1

2h
=

u5 − g2

2h
=

u6 − g3

2h
= 0,

or equivalently,

g1 = u4, g2 = u5, g3 = u6.

Second, from Neumann Condition (1), the right-hand side directly depends on the
condition, g4 and g6 are

u2 − g4

2h
= id cos(

0
2
),

u5 − g6

2h
= id cos(

h

2
).

or equivalently,

g4 = u2 − 2idh cos(
0
2
), g6 = u5 − 2idh cos(

h

2
),

where d =
√

σ2 − 1/4. Third, from Radiation Condition it follows that
g5 − u2

2h
− idu3 =

g7 − u5

2h
− idu6 = 0

or equivalently,

g5 = u2 + 2idhu3, g7 = u5 + 2idhu6.

Finally, from Dirichlet Condition g8, g9 and g10 become automatically

g8 = g9 = g10 = 0.

Substituting g1, g2, . . . , g10 into the six equations (5.16) the following linear systems are
obtained as follows:⎛

⎜⎜⎜⎜⎜⎜⎜⎝

a −2 0 −2 0 0
−1 a −1 0 −2 0

0 −2 a − idh 0 0 −2
−1 0 0 a −2 0

0 −1 0 −1 a −1
0 0 −1 0 −2 a − idh

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

u1

u2

u3

u4

u5

u6

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

f1

0
0
f4

0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,(5.17)

75

where a = 4 − h2σ2, f1 = −2idh cos(0
2), and f4 = −2idh cos(h

2). The above linear systems
(5.17) is not symmetric. Generally speaking, it is harder to solve unsymmetric linear
systems compared with symmetric ones. Therefore, we symmetrize the coefficient matrix
by scaling the form (5.17):⎛

⎜⎜⎜⎜⎜⎜⎜⎝

a/4 −1/2 0 −1/2 0 0
−1/2 a/2 −1/2 0 −1 0

0 −1/2 (a − idh)/4 0 0 −1/2
−1/2 0 0 a/2 −1 0

0 −1 0 −1 a −1
0 0 −1/2 0 −1 (a − idh)/2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

u1

u2

u3

u4

u5

u6

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

f1/4
0
0

f4/2
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.(5.18)

The coefficient matrix of the form (5.18) is non-Hermitian but symmetric.
In our experiments a square grid (M × M) was used. Taking boundary condition into

account, the size of the linear system is M × (M + 1). The experiments were made on the
same conditions as previous subsection. Note that the right-hand side is determined by the
Neumann condition (1).

We tested four iterative methods (CGS, CRS, Bi-CGSTAB, and GPBi-CG) with no
preconditioning in the case of M = 50 for σ = 2.27, 4.16 and M = 100 for σ = 2.27, 4.16.
Numerical results are shown in Table 5.5. “STAB” and “GPB” are short for Bi-CGSTAB
and GPBi-CG.

We see from Table 5.5 that the larger the number of dimension of the matrix or the
value of σ becomes, the larger the required number of iterations tends to increase. In every
case, CRS was the fastest of all. The runner-up is CGS. However, in terms of TRR, CGS
gave an approximate solution with worse accuracy. Especially in M = 100, σ = 4.16, TRR
of CGS is -5.24. The accuracy of the solution may be too far away from that often required
in scientific computations. On the other hand, CRS gave much better solutions than CGS.
In the case of which Bi-CGSTAB converged, it also gave better solution than CGS. GPBi-
CG showed well performances in all cases while it generated a worse solution for the case
M = 100, σ = 2.27.

Residual 2-norm histories of the four methods are shown in Figs. 5.7, 5.8, 5.9, 5.10. We
see from the all Figs that CRS showed smoother convergence behavior than CGS in the

Table 5.5. Results for the elliptic problems (M=grid size, N= order of matrix) and
convergence results (Its = number of iterations, TRR = log10 of the final true relative

residual 2-norm) for the iterative methods.

Its TRR
M N σ CGS CRS STAB GPB CGS CRS STAB GPB
50 2550 2.27 485 429 1025 574 -7.68 -11.34 -11.64 -10.84
50 2550 4.16 933 704 3283 1016 -7.96 -11.65 -11.92 -10.10

100 10100 2.27 1185 908 3157 987 -5.66 -10.56 -11.33 -7.38
100 10100 4.16 2124 1572 † 2336 -5.24 -10.32 -5.53 -10.04

initial stage of convergence. In the middle and the last stage of convergence, CGS and
CRS gave similar convergence behavior. On the other hand, Bi-CGSTAB and GPBi-CG
showed much smoother convergence behavior than CGS and CRS while they required more
iteration steps. Such convergence behavior of Bi-CGSTAB and GPBi-CG comes from
the local minimization of the residual 2-norm. Since Bi-CGSTAB and GPBi-CG use one
and two dimensional local minimization techniques respectively, GPBi-CG tends to give
smoother convergence behavior than Bi-CGSTAB.

76

5.5 Concluding remarks

We see from the results of many numerical experiments that CRS often gives smoother
convergence behavior and generates better approximate solutions than CGS. The main
reason for the smoothness could come from the convergence behavior of Bi-CR whose
residual 2 norm is often less than that of Bi-CG. This smoother behavior is remarkable
since this approach is not based on local minimization of the residual vectors. From another
angle, the product-type method based on Bi-CR may give a paradigm shift; recent main
theme on the product-type methods based on Bi-CG is finding an appropriate polynomial
Hn to give better residual vectors rn(= HnrBiCG

n). However, we focus on not finding Hn

but an alternative basic solver for Bi-CG.
The reason why CRS generates better approximate solutions than CGS could be the

smoother convergence behavior. In [80], it is shown that irregular convergence tends to
lead worse approximate solutions. More precisely, the accuracy depends largely on the
maximum residual 2-norm in the convergence process. Actually, we can see that log10 of
the maximum residual 2-norm of CGS is about 8 in Figs. 5.7, 5.8 and about 10 in Figs.
5.9, 5.10. Hence, the difference is about 2. We can see from Table 5.5 that the difference
between the corresponding TRRs is also about 2.

From the results of numerical experiments and the numerical property, we can say that
CRS may be a useful tool for solving non-Hermitian linear systems arising from scientific
computing.

　

77

-10

-5

0

5

0 200 400 600 800 1000

’CGS’
’CRS’

’Bi-CGSTAB’
’GPBi-CG’

Figure 5.7: Residual 2-norm histories for M = 50, σ = 2.27.

-10

-5

0

5

10

0 200 400 600 800 1000 1200

’CGS’
’CRS’

’Bi-CGSTAB’
’GPBi-CG’

Figure 5.8: Residual 2-norm histories for M = 50, σ = 4.16.

-10

-5

0

5

10

0 500 1000 1500 2000 2500

’CGS’
’CRS’

’Bi-CGSTAB’
’GPBi-CG’

Figure 5.9: Residual 2-norm histories for M = 100, σ = 2.27.

-10

-5

0

5

10

0 500 1000 1500 2000 2500

’CGS’
’CRS’

’Bi-CGSTAB’
’GPBi-CG’

Figure 5.10: Residual 2-norm histories for M = 100, σ = 4.16.

78

Chapter 6

SCGS: a stabilized CGS method

The CGS method is a well-known Krylov subspace method for solving large and sparse
non-Hermitian linear systems. Although there are some practical situations where CGS
converges faster than the other product-type methods such as Bi-CGSTAB and GPBi-CG,
even in such case it often shows rather irregular convergence behavior and gives unreliable
solutions. In this chapter, to improve its convergence behavior, a new iterative method
(Stabilized CGS, or SCGS) is proposed by a simple generalization of CGS.

6.1 Definition of SCGS

Let us define the new residual vector rSCGS
n by the product of the Bi-CG polynomial and a

polynomial Hn of degree n as follows:

rSCGS
n := Hn(A)Rn(A)r0,

where Hn denotes

H0(λ) := 1,
Hn(λ) := Rn−1(λ) − ωn−1λPn−1(λ), n = 1, 2, . . .

Here, Rn and Pn are polynomials described in (2.25) and (2.26). From the above, the choice
ωn−1 = αn−1 leads to CGS. Hence, SCGS can be regarded as a generalization of CGS.

6.2 Recurrence formulas for iterates

Since Rn and Hn are given, recurrence relations for updating the residual vector can be
obtained. By using polynomials Hn+1Rn+1, Rn+1Rn+1, Rn+1Pn+1, PnRn+1, and Pn+1Pn+1,
the residual polynomial Hn+1Rn+1 can be expanded as follows:

Hn+1Rn+1 = (Rn − ωnλPn)Rn+1

= RnRn − αnλRnPn − ωnλPnRn+1,(6.1)
Rn+1Rn+1 = RnRn − αnλRnPn − αnλPnRn+1,(6.2)
Rn+1Pn+1 = Rn+1(Rn+1 + βnPn)

= Rn+1Rn+1 + βnPnRn+1,(6.3)
PnRn+1 = PnRn − αnλPnPn,(6.4)

79

Pn+1Pn+1 = Pn+1Rn+1 + βnPn+1Pn

= Pn+1Rn+1 + βn(PnRn+1 + βnPnPn),(6.5)

where rCGS
n denotes the residual vector of CGS. Let us define new auxiliary vectors by

rCGS
n := Rn(A)Rn(A)r0, en := Rn(A)Pn(A)r0,

hn := Pn(A)Rn+1(A)r0, pn := Pn(A)Pn(A)r0,
rSCGS

n := Hn(A)Rn(A)r0.

Then, it follows from (6.1)-(6.5) that

pn = en + βn−1(hn−1 + βn−1pn−1),
hn = en − αnApn,

rSCGS
n+1 = rCGS

n − αnAen − ωnAhn,(6.6)
rCGS

n+1 = rCGS
n − αnAen − αnAhn,(6.7)

en+1 = rCGS
n+1 + βnhn.

From (6.6) and (6.7), the following formula for the approximate solution can be obtained:

xn+1 = zn + αnen + ωnhn,

zn+1 = zn + αnen + αnhn,

where xn+1 denotes the approximate solution of SCGS and zn+1 denotes that of CGS.

6.3 Computational formulas for αn and βn

In the previous section, we obtained computational formulas for updating residual vectors
of SCGS. In this section, based on αn and βn used in the Bi-CG polynomial, we consider
computational formulas for αn and βn using SCGS iterates.

We see from (B.18), (B.20) that the following inner products are needed for computing
αn and βn:

((AH)nr∗
0, Rn(A)r0), ((AH)nr∗

0, APn(A)r0).(6.8)

Here, let us introduce an n degree polynomial of the form

Gn(λ) :=
n∑

k=0

ckλ
k,

where the coefficient cn �= 0. Then, the inner products (6.8) can be computed as follows:

(Ḡn(AT)r∗
0, Rn(A)r0) = (

n∑
k=0

c̄k(AH)kr∗
0, Rn(A)r0)

= (c̄n(AH)nr∗
0, Rn(A)r0) + (

n−1∑
k=0

c̄k(AH)kr∗
0, Rn(A)r0).

Since we see from the Petrov-Galerkin condition (2.4) that the second term of the right-hand
side is zero, we obtain

((AH)nr∗
0, Rn(A)r0) =

1
cn

· (Ḡn(AT)r∗
0, Rn(A)r0)(6.9)

=
1
cn

· (r∗
0, Gn(A)Rn(A)r0).

80

From (B.19), we also have

((AH)nr∗
0, APn(A)r0) =

1
cn

· (Ḡn(AT)r∗
0, APn(A)r0)(6.10)

=
1
cn

· (r∗
0, AGn(A)Pn(A)r0).

In the SCGS method, there are three kinds of polynomials Rn, Pn, and Hn, and the
coefficients of the highest-order term of Rn and Pn are

σn = (−1)n
n−1∏
k=0

αk.

Similarly, that of Hn is

τn = (−1)nωn−1

n−2∏
k=0

αk.

Thus from (6.9) and (6.10), the inner products (6.8) can be computed as follows:

((AH)nr∗
0, Rn(A)r0) =

1
σn

· (r∗
0, Rn(A)Rn(A)r0)(6.11)

=
1
σn

· (r∗
0, Pn(A)Rn(A)r0)

=
1
τn

· (r∗
0, Hn(A)Rn(A)r0),

((AH)nr∗
0, APn(A)r0) =

1
σn

· (r∗
0, ARn(A)Pn(A)r0)(6.12)

=
1
σn

· (r∗
0, APn(A)Pn(A)r0).

To compute (6.11) and (6.12), the following auxiliary vectors can be used:

rCGS
n = Rn(A)Rn(A)r0, en = Rn(A)Pn(A)r0,

hn = Pn(A)Rn+1(A)r0, pn = Pn(A)Pn(A)r0.

Therefore, there are six patterns for computing αn and ten patterns for computing βn.

αn = ρ0
(r∗

0, r
SCGS
n)

(r∗
0, Apn)

= ρ0
(r∗

0, r
SCGS
n)

(r∗
0, Aen)

=
(r∗

0, en)
(r∗

0, Apn)
=

(r∗
0, en)

(r∗
0, Aen)

=
(r∗

0, r
CGS
n)

(r∗
0, Apn)

=
(r∗

0, r
CGS
n)

(r∗
0, Aen)

,

βn =
1
ωn

· (r∗
0, r

SCGS
n+1)

(r∗
0, Apn)

=
1
ωn

· (r∗
0, r

SCGS
n+1)

(r∗
0, Aen)

=
1
αn

· (r∗
0, r

CGS
n+1)

(r∗
0, Apn)

=
1
αn

· (r∗
0, r

CGS
n+1)

(r∗
0, Aen)

=
1
ρ0

· (r∗
0, r

CGS
n+1)

(r∗
0, r

SCGS
n)

=
(r∗

0, r
CGS
n+1)

(r∗
0, en)

=
(r∗

0, r
CGS
n+1)

(r∗
0, r

CGS
n)

=
ρ1

ρ0
· (r∗

0, r
SCGS
n+1)

(r∗
0, r

SCGS
n)

= ρ1
(r∗

0, r
SCGS
n+1)

(r∗
0, en)

= ρ1
(r∗

0, r
SCGS
n+1)

(r∗
0, r

CGS
n)

,

81

where

ρ0 =
αn−1

ωn−1
, ρ1 =

αn

ωn
.

Although these parameters are mathematically equivalent, these convergence histories are
quite different due to a rounding error. Hence, by many numerical experiments, we found
a pair of parameters, αn and βn, that were often numerically stabler than the others.

6.4 Implementation

In the SCGS method, ωn−1 is determined by minimizing 2-norm of the residual vector
rSCGS

n , i.e.

ωn−1 = arg min
ω∈C

‖rSCGS
n ‖.

From the above choice, we have the following result:

Theorem 6.4.1 In exact precision arithmetic, SCGS always converges faster than CGS:

‖rSCGS
n ‖ ≤ ‖rCGS

n ‖.
P roof. Let f(ω) be a function of ω

f(ω) = ‖rCGS
n−1 − αn−1Aen−1 − ωAhn−1‖.

Then, from the definitions of rSCGS
n and ωn−1, it follows that

‖rSCGS
n ‖ = min

ω
‖f(ω)‖ ≤ ‖f(αn−1)‖ = ‖rCGS

n ‖.

Thus, if CGS converges, SCGS does in fewer number of iterations. �

Now, let us introduce the new auxiliary vector

qn = APn(A)Pn(A)r0,(6.13)

then we obtain the SCGS method as follows:

Algorithm 6.1: SCGS method

x0 is an initial guess, rSCGS
0 = b − Ax0, z0 = x0,

set r∗
0 = e0 = rCGS

0 = rSCGS
0 , β−1 = 0, ρ0 = 1,

for n = 0, 1, . . . ,until ‖rSCGS
n ‖ ≤ ε‖b‖ do:

qn = Aen + βn−1(Ahn−1 + βn−1qn−1),

αn =
(r∗

0, r
CGS
n)

(r∗
0, Aen)

,

hn = en − αnqn,

Ahn = A(en + hn) − Aen,

ωn =
(Ahn, rCGS

n − αnAen)
(Ahn, Ahn)

, ρ1 =
αn

ωn
,

82

rSCGS
n+1 = rCGS

n − αnAen − ωnAhn,

if ‖rSCGS
n+1 ‖ ≤ ε‖rSCGS

0 ‖, then
xn+1 = zn + αnen + ωnhn,

end if and stop
rCGS

n+1 = rCGS
n − αnA(en + hn),

zn+1 = zn + αn(en + hn),

βn =
ρ1

ρ0
· (r∗

0, r
SCGS
n+1)

(r∗
0, r

SCGS
n)

, ρ0 = ρ1,

en+1 = rCGS
n+1 + βnhn.

end

When SCGS is applied to the linear system (2.15), the rewrites

x̃n ⇒ K2xn, z̃n ⇒ K2zn, ẽn ⇒ K−1
1 en,

h̃n ⇒ K−1
1 hn, q̃n ⇒ K−1

1 qn, r̃SCGS
n ⇒ K−1

1 rSCGS
n ,

r̃CGS
n ⇒ K−1

1 rCGS
n , r̃∗

0 ⇒ KH
1 r∗

0.

lead to the preconditioned SCGS method.

Algorithm 6.2: Preconditioned SCGS method

x0 is an initial guess, rSCGS
0 = b − Ax0, z0 = x0,

set r∗
0 = e0 = rCGS

0 = rSCGS
0 , β−1 = 0, ρ0 = 1,

for n = 0, 1, . . . ,until ‖rSCGS
n ‖ ≤ ε‖b‖ do:

qn = AK−1en + βn−1(AK−1hn−1 + βn−1qn−1),

αn =
(r∗

0, r
CGS
n)

(r∗
0, AK−1en)

,

hn = en − αnqn,

AK−1hn = AK−1(en + hn) − AK−1en,

ωn =
(AK−1hn, rCGS

n − αnAK−1en)
(AK−1hn, AK−1hn)

, ρ1 =
αn

ωn
,

rSCGS
n+1 = rCGS

n − αnAK−1en − ωnAK−1hn,

if ‖rSCGS
n+1 ‖ ≤ ε‖rSCGS

0 ‖, then
K−1hn = K−1(hn + en) − K−1en,

xn+1 = zn + αnK−1en + ωnK−1hn,

end if and stop
rCGS

n+1 = rCGS
n − αnAK−1(en + hn),

zn+1 = zn + αnK−1(en + hn),

βn =
ρ1

ρ0
· (r∗

0, r
SCGS
n+1)

(r∗
0, r

SCGS
n)

, ρ0 = ρ1,

en+1 = rCGS
n+1 + βnhn.

end

Let us show the computational costs of product-type methods per iteration in Table. 6.1.

83

Table 6.1. Summary of operations for iterations.

Inner Matrix-Vector Preconditioner
Method Product AXPY Product Solve
CGS 2 6 2 2
SCGS 5 8 2 2

where AXPY is short for operations + vector scaling, and the approximate solution xn+1

does not need to update at every step but only one time when 2-norm of relative residual
‖rSCGS

n+1 ‖/‖b‖ satisfies a stopping criterion.

A generalization of the SCGS method

From the idea of SCGS, we can naturally consider a generalization of it. To achieve this,
let us define the polynomial Hn by

H0(λ) := 1, G0(λ) = ζ0,

Hn(λ) := Rn−1(λ) − λGn−1(λ),
Gn(λ) := ζnRn(λ) + ηnPn−1(λ), n = 1, 2, . . .

Then, we can see that the above polynomial is similar to the one used by product-type
methods based on Bi-CG and Bi-CR. If we define the nth residual vector by

rn := Hn(A)rBiCG
n ,

then we readily obtain CGS from the choice ζn = αn, ηn = αnβn−1 and obtain SCGS from
the choice η = βn−1ζn, ζn = arg min ‖rn‖. Hence, the above framework is regarded as a
generalization of CGS and SCGS. Similar to the choice for SCGS, we adopt the following
choice:

ζn, ηn = arg min
ζn,ηn∈C

‖rn‖.

We call the resulting algorithm SCGS2. The relationship among CGS, SCGS, and SCGS2
is given in Table 6.2.

Table 6.2. The choice for CGS, SCGS, and SCGS2.

CGS ζn = αn, ηn = αnβn−1 ⇐⇒ Hn = Rn

SCGS ζn = arg min
ζn∈C

‖rn+1‖, ηn = βn−1ζn

SCGS2 ζn, ηn = arg min
ζn,ηn∈C

‖rn+1‖

By the choice for SCGS2, we obtain the following theorem:

Theorem 6.4.2 In exact precision arithmetic, SCGS2 always converges faster than CGS
and SCGS:

‖rn‖ ≤ ‖rSCGS
n ‖ ≤ ‖rCGS

n ‖.

84

Proof. Let f(ζ, η) be a function of ζ and η

f(ζ, η) = ‖Rn−1r
BiCG
n − ζARn−1r

BiCG
n − ηAPn−2r

BiCG
n ‖.

From the choice for CGS, SCGS, and SCGS2 given in Table 6.2, it follows that

min
ζ,η

f(ζ, η) ≤ min
ζ

f(ζ, βn−2ζ) ≤ f(αn−1, αn−1βn−2) ⇐⇒ ‖rn‖ ≤ ‖rSCGS
n ‖ ≤ ‖rCGS

n ‖.

Thus if CGS converges, SCGS2 does in fewer number of iterations than CGS and SCGS. �

Recurrence formulas for iterates

We see from Theorem 6.4.2 that in exact arithmetic SCGS2 gives smoother convergence
behavior than CGS and SCGS. Hence, it is worth designing the algorithm of SCGS2. In
the following, we give update formulas for the residual vector and the approximate solution
of SCGS2. From the definition of SCGS2 and CGS polynomial, we have

Hn+1Rn+1 = RnRn+1 − ζnλRnRn+1 − ηnλPn−1Rn+1,

RnRn+1 = RnRn − αnλRnPn,

Rn+1Rn+1 = RnRn+1 − αnλPnRn+1,

RnPn = RnRn + βn−1Pn−1Rn,

PnRn+1 = RnPn − αnλPnPn,

RnPn+1 = RnRn+1 + βnRnPn,

Pn+1Pn+1 = Rn+1Pn+1 + βn(PnRn+1 + βnPnPn).

To reduce the number of matrix-vector multiplications, the term underlined is expanded
below.

λPnRn+2 = λPnRn+1 − αn+1

αn
(λRnPn+1 − λRn+1Pn+1),

λPnRn+1 = λRnRn+1 + βn−1λPn−1Rn+1,

λPn+1Pn+1 = λRn+1Pn+1 + βn(λPnRn+1 + βnλPnPn).

Similarly, λRnPn+1 is expanded as

λRnPn+1 = λRnRn+1 + βnλRnPn.

From the above, using the following notations:

tn := RnRn+1r0, yn := Pn−1Rn+1r0, rCGS
n := RnRnr0, en := RnPnr0,

hn := PnRn+1r0, fn := RnPn+1r0, pn := PnPnr0, vn := λPn−1Rn+1r0,
sn := λPnRn+1r0, qn := λPnPnr0, wn := λPnRn+1r0, zn := λRnPn+1r0,

then we can update the residual vector with only two matrix-vector multiplications. The
preliminary algorithm is given as follows:

Algorithm 6.3: Preliminary SCGS2 method

x0 is an initial guess, r0 = b − Ax0, z0 = x0,

set r0 = r∗
0 = e0 = rCGS

0 , s−1 = h−1 = 0, β−1 = 0,

85

for n = 0, 1, . . . ,until ‖rn‖ ≤ ε‖b‖ do:
en = rCGS

n + βn−1hn−1,

pn = en + βn−1(tn−1 + βn−1(en−1 + pn−1)),
qn = Aen + βn−1(sn−1 + βn−1qn−1),
compute αn,

tn = rCGS
n − αnAen

vn = hn−1 − αn

αn−1
(tn−1 + βn−1en−1 − en),

yn = sn−1 − αn

αn−1
(Atn−1 + βn−1Aen−1 − Aen),

sn = Atn + βn−1yn,

ζn, ηn = arg min ‖rn+1‖,
xCGS

n+1 = xCGS
n + αnen + αntn + αnβn−1vn,

xn+1 = xn + αnen + ζntn + ηnvn,

rCGS
n+1 = tn − αn(Atn + βn−1yn),

rn+1 = tn − ζnAtn − ηnyn,

compute βn,

hn = en − αnqn.

end

Similar to SCGS, there are many variants of computational formulas for αn and βn. Hence,
we need to find optimal formulas by many numerical experiments for obtaining a numeri-
cally stable algorithm.

6.5 Numerical experiments

� Matrix market problems

In this section, we present the results of numerical experiments on a range of problems from
Harwell-Boeing collection [26], NEP collection [3], SPARSKIT collection [67], and from Tim
Davis’s collection [21]. The data of all matrices were transformed into CRS format. We
chose a random vector for the right-hand side of each linear system.

The matrices used in the experiments come from reservoir simulation (ORS* and SHER-
MAN*), chemical kinetics (FS5414), circuit simulation (MEMPLUS and ADD*), finite ele-
ment modeling (CAVITY05 and FIDAP*), electrical engineering (DW2048), fluid dynamics
(CDDE1), partial differential equations (PDE2961), and nuclear physics (UTM1700). The
order N and number NNZ of nonzeros for each test problem are given in Table 6.3, together
with the number of iterations, computational times, and log10 of true relative residual 2-
norm for the unpreconditioned iterative methods. “†” denotes that a solver did not converge
in 2000 iterations, and “∗” denotes that preconditioning could not be implemented because
of the breakdown.

All tests were performed on an ALPHA work station with a 750MHz processor using
double precision arithmetic. Codes were written in standard Fortran 77 and compiled with
the optimization option -O4. CPU time was given in seconds and it was measured by using
the standard linux command time.

86

In all cases, the iteration was started with x0 = 0. The stopping criterion used was
‖rn‖/‖b‖ ≤ 10−12, where rn is the (unpreconditioned) residual vector.

Table 6.4 represents the results of experiments with the ILU(0) preconditioner. Split
preconditioning was used for all the experiments.

In terms of the number of iterations, the results support Theorem 6.4.1 without excep-
tions CAVITY05, ORSIRR1, ORSIRR2, and UTM1700A. The exceptions may be caused
by a round-off error and highly ill-conditioned matrices. CDDE1 and DW2048, on the
contrary, are suitable for SCGS from the fact that the number of iterations decreased by
more than ten percent.

Looking at computational time in Table 6.3, CGS converged a little faster than SCGS,
which implies that even if SCGS satisfies a stopping criterion in fewer steps than CGS,
SCGS required more computational time because of the additional costs per iteration step.
If a coefficient matrix has a large number of nonzeros, the cost of matrix-vector product is
much expensive. Since the two methods have 2 matrix-vector product per iteration, they
have almost same computational costs, and thus such tendency will disappear.

TRR shows how high the accuracy of an approximate solution is. CAVITY05, DW2048,
FS5414 and ORSIRR1 give us some light into the property of SCGS. The true relative
residual of SCGS was much better than that of CGS even though the computational time
is almost of the same order.

In Table 6.4 we give iteration counts, computational time, and true relative residual
2-norm for the two iterative solvers preconditioned with ILU(0). It appears from these
results that the convergence behavior was similar to that for unpreconditioned systems.
As regards iteration number, CGS was better than SCGS in the problems of FS5414 and
MEMPLUS. The other problems were a little favorable for SCGS. However, clear differences
did not occur since each of the preconditioned methods had high performance in all problems
except for DW2048.

� The Helmholtz equation

We consider the following boundary value problem:

uxx + uyy + σ2u = 0, (x, y) ∈ [0, π] × [0, π],

ux|x=0 = i
√

σ2 − 1
4 cos y

2 , Neumann Condition,

ux − i
√

σ2 − 1
4u|x=π = 0, Radiation Condition,

uy|y=0 = 0, Neumann Condition,
u|y=π = 0, Dirichlet Condition.

In Table 6.5, the number of iterations required for convergence, computing time and
log10 of true relative residual 2-norm are shown for two fixed values σ = 2.27 and σ =
4.16, and for different grid size. The result is shown for CGS and SCGS with ILU(0)
preconditioning.

It appears from the results that SCGS was much more effective and robuster than CGS.
From the point of view of the number of iterations, SCGS converged faster in all cases
except for M = 100, σ = 4.16. Since computational costs of CGS per iteration are a little
more expensive, SCGS makes up for the extra time by the convergence in fewer iteration
steps. SCGS also improved the true relative residual. Notably, SCGS found much better
approximate solutions in the problem of M = 100, σ = 2.27 while CGS caused stagnation.
The two methods did not converge by 2000 iterations in the problem of M = 100, σ = 4.16.

87

Table 6.3. Test problems (N= order of matrix, NNZ= nonzeros in matrix) and results
(Its = number of iterations, Time = computational time, TRR = log10 of the final true

relative residual 2-norm) for the iterative methods without preconditioning.

Its Time TRR
Matrix N NNZ CGS SCGS CGS SCGS CGS SCGS
ADD20 2395 17319 399 380 0.61 0.61 -12.01 -12.07
ADD32 4960 23884 73 70 0.27 0.27 -12.34 -12.19
CAVITY05 1182 32747 722 723 1.07 1.10 -8.69 -10.99
CDDE1 961 4681 146 125 0.11 0.10 -11.92 -11.91
DW2048 2048 10114 2315 2076 3.31 3.09 -6.00 -8.58
FIDAP020 2203 69579 † † † † † †
FIDAP037 3565 67591 71 68 0.41 0.43 -12.10 -12.44
FS5414 541 4285 1339 1334 0.44 0.46 -6.24 -8.55
MENPLUS 17758 126150 1397 1332 17.70 17.93 -8.24 -8.93
ORSIRR1 1030 6858 1103 1129 1.00 1.05 -6.80 -9.54
ORSIRR2 886 5970 789 807 0.61 0.63 -7.65 -8.00
ORSREG1 2205 14133 344 337 0.73 0.75 -12.07 -12.21
PDE2961 2961 14585 191 190 0.45 0.45 -10.88 -11.49
SHERMAN1 1000 3750 537 513 0.28 0.28 -11.09 -11.50
SHERMAN3 5005 20033 † † † † † †
SHERMAN4 1104 3786 131 127 0.08 0.08 -12.39 -12.40
SHERMAN5 3312 20793 2169 2167 3.43 3.73 -8.13 -7.77
UTM1700A 1700 21313 1673 1706 2.39 2.62 -6.53 -6.85

Table 6.4. Test problems and results for the iterative methods with ILU(0).

Its Time TRR
Matrix N NNZ CGS SCGS CGS SCGS CGS SCGS
ADD20 2395 17319 173 169 0.49 0.50 -12.06 -12.15
ADD32 4960 23884 34 34 0.25 0.25 -12.09 -12.20
CAVITY05 1182 32747 ∗ ∗ ∗ ∗ ∗ ∗
CDDE1 961 4681 37 37 0.05 0.05 -12.57 -12.60
DW2048 2048 10114 † † † † † †
FIDAP020 2203 69579 153 154 1.07 1.10 -10.78 -9.49
FIDAP037 3565 67591 9 9 0.28 0.29 -12.81 -12.81
FS5414 541 4285 725 844 0.40 0.48 -6.07 -6.20
MENPLUS 17758 126150 329 323 7.89 8.27 -10.94 -11.96
ORSIRR1 1030 6858 46 43 0.08 0.08 -12.71 -12.37
ORSIRR2 886 5970 45 45 0.07 0.07 -12.29 -12.42
ORSREG1 2205 14133 55 51 0.22 0.20 -12.51 -12.45
PDE2961 2961 14585 43 43 0.18 0.19 -12.84 -12.92
SHERMAN1 1000 3750 44 43 0.05 0.05 -12.10 -12.65
SHERMAN3 5005 20033 93 92 0.49 0.51 -12.38 -12.23
SHERMAN4 1104 3786 32 32 0.04 0.04 -12.47 -12.79
SHERMAN5 3312 20793 57 53 0.24 0.23 -10.11 -10.00
UTM1700A 1700 21313 133 135 0.40 0.43 -8.86 -8.90

88

Let us show the convergence behaviors in Figs 6.1 - 6.4. From Fig. 6.1 we observe that
SCGS smoothed the convergence behavior of CGS and the 2-norms of relative residuals at
each step were smaller than those of CGS. As a result, SCGS converged faster than CGS.
In Fig. 6.2, the 2-norms of the relative residuals of SCGS were larger around at the step
170. Though round-off errors had a great influence on SCGS, SCGS converged faster than
CGS. The most remarkable thing is that the convergence behavior was completely different
after the iterative step about 100 in Fig. 6.3. From Fig. 6.4, the behavior of SCGS seems
to be still better though the two methods did not converge at step 2000.

Table 6.5. Results for the elliptic problems (M=grid size, N= order of matrix) and
convergence results (Its = number of iterations, Time = computational time, TRR =
log10 of the final true relative residual 2-norm) for the iterative methods with ILU(0).

Its Time TRR
M N σ CGS SCGS CGS SCGS CGS SCGS
50 2550 2.27 128 115 0.12 0.12 -9.97 -9.99
50 2550 4.16 222 179 0.20 0.18 -11.5 -11.5

100 10100 2.27 † 450 † 2.01 † -10.54
100 10100 4.16 † † † † † †

6.6 Concluding remarks

In this chapter, we have developed the algorithm of CGS for stabilizing the irregular con-
vergence behavior. In terms of theory, while CGS uses the Bi-CG polynomial squared, we
devised a new polynomial with one free parameter which includes the Bi-CG polynomial
and defined a new residual vector by the product of the new polynomial and the Bi-CG
polynomial. By choosing the parameter such that the residual 2-norm is locally minimized,
we could obtain an algorithm called SCGS. We proved that in exact precision arithmetic
SCGS always converges faster than CGS in terms of the number of iterations.

We have learned from various numerical experiments that SCGS often gives smoother
convergence behavior and gives more reliable solutions than CGS. Hence, we can say that
SCGS may be an alternative solver for the fields where CGS is still the method of choice.
　

89

-12

-10

-8

-6

-4

-2

0

2

4

6

0 50 100 150 200 250

’SCGS’
’CGS’

Figure 6.1: Residual 2-norm histories for M = 50, σ = 2.27.

-12

-10

-8

-6

-4

-2

0

2

4

6

0 50 100 150 200 250

’SCGS’
’CGS’

Figure 6.2: Residual 2-norm histories for M = 50, σ = 4.16.

-12

-10

-8

-6

-4

-2

0

2

4

6

0 200 400 600 800 1000

’SCGS’
’CGS’

Figure 6.3: Residual 2-norm histories for M = 100, σ = 2.27.

-12

-10

-8

-6

-4

-2

0

2

4

6

0 200 400 600 800 1000

’SCGS’
’CGS’

Figure 6.4: Residual 2-norm histories for M = 100, σ = 4.16.

90

Chapter 7

Conclusion

In this thesis, we focused on the A-orthogonalization property of the conjugate residual
(CR) method for solving Hermitian (indefinite) linear systems. Based on the property of
CR, we extended CR to general non-Hermitian linear systems and obtained a bi-conjugate
residual (Bi-CR) method. From the results of numerical experiments, Bi-CR can be an
attractive basic solver, i.e. various developments from Bi-CR can be considered. As a special
case of Bi-CR, we derived a conjugate orthogonal conjugate residual (COCR) method for
solving complex symmetric linear systems. Based on the algorithm of Bi-CR, we derived a
conjugate residual squared (CRS) method as a result of one of the product-type methods.
On the other hand, we improved the performance of the conjugate gradient squared (CGS)
method that is one of product-type methods based on Bi-CG.

In chapter 3, based on the property of CR, we obtained the algorithm of Bi-CR whose
residual vectors satisfy rn ⊥ AHKn(AH, r∗

0). We observed from the algorithm of Bi-CR
that Bi-CR reduces to CR if the coefficient matrix is Hermitian and that Bi-CG and Bi-CR
require almost the same computational costs per iteration. We have learned from many
numerical experiments that Bi-CR often gives smoother convergence behavior and converges
faster than Bi-CG. Since this smoother behavior is similar to CR, Bi-CR may have inherited
something from the property of CR. Therefore, the analysis of this convergence behavior
needs to be done for future work.

In chapter 4, we extended CR to complex symmetric linear systems. The main idea was
to consider a procedure which generates residual vectors satisfying rn ⊥ AKn(A, r0). As a
result of the extension, we obtained an algorithm of COCR. We showed that Bi-CR reduces
to COCR if the coefficient matrix is complex symmetric and that COCR reduces to CR if
the coefficient matrix is real symmetric. From the algorithm, we have learned that COCR
has almost the same computational costs per iteration as COCG and QMR SYM which
are regarded as successful Krylov subspace methods for complex symmetric linear systems.
We have learned from some numerical experiments that COCR as well as QMR SYM often
shows smoother convergence behavior than COCG. Hence, COCR could be a competitive
solver for this class of matrices.

In chapter 5, we obtained CRS as one of product-type methods based on Bi-CR. This
framework came from an analogy of product-type methods based on Bi-CG which were
first introduced by S.-L. Zhang (1997). CGS and CRS have almost the same computational
costs per iteration. We have learned that CRS often gives smoother convergence behavior
than CGS and often generates more accurate solutions than CGS. In the examples of
Helmholtz equations, when CGS worked well, CRS converged faster than the other well-
known methods such as CGS, Bi-CGSTAB, and GPBi-CG. Hence, CRS may become a

91

Figure 7.1: Research flow chart.

useful and reliable tool for solving non-Hermitian linear systems especially in the case
where CGS works well. However, there are some examples where CRS did not converge,
this will motivate us to look for more appropriate matrix polynomials for future work.

In chapter 6, we proposed a stabilized conjugate gradient (SCGS) method to improve
the convergence behavior of CGS. The idea was based on the introduction of a polynomial
which includes one of the Bi-CG polynomials used in CGS. We proved that in exact precision
arithmetic the nth residual 2-norm of SCGS is always less than that of CGS. From the
numerical experiments, we have learned that SCGS produced much more reliable solutions.
Since the convergence of SCGS theoretically depends strongly on that of CGS, SCGS is
preferred to use for the problems where CGS works well.

The research flow chart is shown in Fig. 7.1. We can see from Fig. 7.1 that the present
thesis concerns systematic research on the conjugate residual method and that the figure
directly gives us future work.

Figure 7.2: Future work.

Finally, we describe the remaining topics that will be future work.

(1) We can apply the idea of SCGS to CRS. Choosing a suitable polynomial will enable

92

us to obtain SCRS that always converges faster than CRS in terms of the number of
iteration steps in exact precision arithmetic.

(2) From the framework of product-type methods based on Bi-CR, we will derive Bi-
CRSTAB, Bi-CRSTAB2, Bi-CRSTAB(�), and GPBi-CR. Moreover, we will find a
suitable polynomial for the product-type methods since well-known polynomials for
product-type methods based on Bi-CG may not be always useful for those based on
Bi-CR.

From (2), we can also consider one of the product-type methods by using the Bi-CG and
Bi-CR polynomial. The above future work is shown in Fig. 7.2.

On the other hand, QMR-like approach may be a good approach. Since it is known that
QMR is closely related to Bi-CG, QMR-like approach may be also closely related to Bi-CR.
If this QMR-like method and Bi-CR have close relationship, then a QMR-like method will
be derived for non-Hermitian linear systems, and for complex symmetric linear systems.
Moreover, product-type methods such as QMRCGSTAB-like approach will be also available
for solving non-Hermitian linear systems.

93

Appendix A

Data structures

Devising data structure gives us lots of benefits in saving memory and computational time.
For example, if the coefficient matrix is large and sparse, it is reasonable to consider schemes
to retain only non-zero elements. There are many methods for storing data (see, e.g., Saad
[67] and Eijkhout [29]) such as Compressed Row and Column Storage (CRS and CCS),
Block Compressed Row Storage, Compressed Diagonal Storage (CDS), Jagged Diagonal
Storage, and Skyline Storage. In this chapter, we will discuss CRS and CDS that were used
in our numerical experiments. For details on other data structures, see, e.g., Templates [5].

A.1 Compressed row storage (CRS)

The compressed row storage makes no assumptions about the sparsity structure of the
matrix, and it doesn’t store nonzero elements. On the other hand, it requires an indirect
addressing step for every operation with regard to the coefficient matrix. We show an
example of CRS format. Let us consider the nonsymmetric matrix defined by

A =

⎛
⎜⎜⎜⎜⎜⎝

11 0 13 14 0
21 22 0 0 0
31 0 33 0 35
0 42 0 44 45
51 52 0 0 55

⎞
⎟⎟⎟⎟⎟⎠ .

Then, the CRS format for this matrix is given by the following array {IA,JA,A}:
IA 1 4 6 9 12 15
JA 1 3 4 1 2 1 3 5 2 4 5 1 2 5
A 11 13 14 21 22 31 33 35 42 44 45 51 52 55

.

IA is a row pointer vector that stores the starting location of each rows. The JA vector
stores the column indices of the elements in the matrix A, and A stores the values of the
nonzero elements of the matrix A. This approach needs only 2NNZ+n+1 instead of storing
n2 elements, where NNZ is the number of nonzeros in the matrix A. If the matrix A is
symmetric, we need to store only an upper (or lower) triangular matrix.

� Matrix-vector product for CRS

The matrix vector product y = Ax using CRS format can be expressed in the usual way:

yi =
∑
j

ai,jxj .

94

From the above, the matrix-vector multiplication is given by

for i = 1, n

y(i) = 0,

for j = IA(i), IA(i + 1) − 1
y(i) = y(i) + A(j) ∗ x(JA(j)).

end
end

We see from the above algorithm that the operation count is 2 times the number of nonzero
elements in A, which is a significant saving over the dense operation requirement of 2n2.

� ILU(0) preconditioner for CRS

Here, we consider ILU(0) using the CRS format. Assuming that a graph of the matrix
A contains no triangles. It follows from the assumption that ILU(0) has the form A ≈
K = (D + LA)D−1(D + UA), where LA and UA are a strictly lower (upper) triangular
part of A. Hence, we only need to store a diagonal matrix D containing the pivots of
the factorization. In fact, we will store the inverses of the pivots rather than the pivots
themselves. This implies that during the system solution no divisions have to be performed.

The factorization begins with copying the matrix diagonal

for i = 1, n

d(i) = A(d(i)),
end

where we introduced an array of diagonal pointer, i.e, A(d(i))=ai,i. Each elimination step
starts by inverting the pivot

for i = 1, n

d(i) = 1/d(i).

For all nonzero elements ai,j with j > i, we next check whether aj,i is a nonzero element.

for j =d(i) + 1, IA(i + 1) − 1
found=FALSE,

for k =IA(JA(j)), d(JA(j) − 1)
if (JA(k)=i) then

found=TRUE,

element=A(k),
end if

end
{If so, we update aj,j}
If(found=TRUE) then

d(JA(j))=d(JA(j))-element∗d(i)∗A(j).
end if

end
end

95

In preconditioned iterative methods we need to solve the system Ky = x. If the precondi-
tioner is factorized as K = LU , and then the system LUy = x can be solved in the usual
manner by introducing a temporary vector z:

Lz = x, Uy = z.

It follows from the incomplete factorization of the form

K = (D + LA)D−1(D + UA) = (D + LA)(I + D−1UA).

that the previous systems can be solved by

(D + LA)z = x, (I + D−1UA)y = z.

We show a CRS-based precondition solve below. The former part of the following code is
for obtaining z and the latter for y.

for i = 1, n

sum=0,

for j =IA(i), d(i)-1
sum = sum + A(j) ∗ z(JA(j)),

end
z(i)=d(i) ∗ (x(i)-sum),

end
for i = 1, n, (step -1)

sum=0,

for j =d(i)+1, IA(i + 1)-1
sum = sum + A(j) ∗ y(JA(j)),

end
y(i)=z(i)−d(i)∗sum.

end

A.2 Compressed diagonal storage (CDS)

In this section, we describe the CDS format which is often used in the case where the matrix
A is banded. To explain the CDS format we give a simple example. Let A be of the form

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

11 12 0 0 15 0 0
21 22 23 0 0 26 0
0 32 33 34 0 0 37
0 0 43 44 45 0 0
51 0 0 54 55 56 0
0 62 0 0 65 66 67
0 0 73 0 0 76 77

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Then, we need to prepare five vectors to store diagonal elements of the coefficient matrix.

96

SL2 0 0 0 0 51 62 73
SL1 0 21 32 43 54 65 76
SDA 11 22 33 44 55 66 77
SU1 12 23 34 45 56 67 0
SU2 15 26 37 0 0 0 0

,

where SL1 and SL2 store the lower part of the coefficient matrix A, SDA the diagonal part,
and SU1 and SU2 the upper part.

� Matrix-vector product for CDS

The coefficient matrix A ∈ Cn×n given by a five-point central finite difference discretization
of second order PDEs is generally written as follows:

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1,1 a1,2 a1,m

a2,1
.
. an−m+1,n

am,1
.

. an−1,n

an,n−m+1 an,n−1 an,n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Since CDS format does not need list vectors, which means there is no indirect addressing,
during matrix-vector product, it is quite useful to decrease computing time per iteration.
Here, we consider the matrix vector product and ILU(0) for CRS format. We first show
the sample program of a matrix-vector product for CDS below.

for i = 1, n

y(i) = SL2(i) ∗ x(i − m)+SL1(i) ∗ x(i − 1)+SDA(i) ∗ x(i)
+ SU1(i) ∗ x(i + 1)+SU2(i) ∗ x(i + m)

end

The costs for the product reach O(8n), which is almost of the same order as five inner
products. Another advantage of this algorithm is that it is vectorizable with vector length
of essentially the matrix order n. Because of the regular access, most machines can perform
this algorithm efficiently by keeping five base registers and using simple offset addressing.

� ILU(0) preconditioner for CDS

Next, we show the code of ILU(0) preconditioning for CDS format. Matrices arising from
finite difference discretization regularly have a zero-free diagonal and furthermore these
elements are not even nearly equal to zeros. This implies that it is usually possible to carry
out an incomplete factorization without any difficulties. First, we show the code for storing
the inverses of the pivots:

PDA(1) = 1/SDA(1),
for i = 2, m

PDA(i) = 1/(SDA(i)−SU1(i − 1)∗SL1(i)∗PDA(i − 1)),
end

97

for i = m + 1, n

PDA(i) = 1/(SDA(i)−SU1(i − 1)∗SL1(i)∗PDA(i − 1)
−SU2(i − m)∗SL2(i)∗PDA(i − m)).

end

For solving the system (D + L)D−1(D + U)y = x we consider the form (D + L)z = x for
forward substitution and the form (I + D−1U)y = z for backward substitution:

for i = 1, n

y(i) = (x(i)−SL1(i) ∗ y(i − 1)−SL2(i) ∗ y(i − m))∗PDA(i),
end
for i = n − 1, i, (step -1)

y(i) = y(i) − PDA(i)*(SU1(i) ∗ y(i + 1)+SU2(i) ∗ y(i + m)).
end

The above code is used for the 5-point central difference discretization of partial differential
equations with a rectangular mesh.

98

Appendix B

Derivations of successful Krylov
subspace methods

B.1 KS methods for Hermitian linear systems

� The CG method

We give details of the derivation for CG. Substituting (2.19) for ṽn of Algorithm 2.7, the
residual vector rn can be computed by the following three-term recurrences:

r1 = α0
(r0, Ar0)
(r0, r0)

r0 − α0Ar0,

rn = αn−1

{
(rn−1, Arn−1)
(rn−1, rn−1)

rn−1(B.1)

+
(rn−2, Arn−1)
(rn−2, rn−2)

rn−2 − Arn−1

}
,

where αn−1 = −(yn, en)/hn,n−1(yn−1, en−1). Since the inverse matrix H−1
n ∈ Rn×n, it

follows that the parameter αn−1 ∈ R. From the inner product of rn and (B.1), we obtain

αn−1 = − (rn, rn)
(rn, Arn−1)

= − (rn, rn)
(rn−1, Arn)

.

Substituting (2.18) into (B.1), we have

rn = αn−1

{
(rn−1, Arn−1)
(rn−1, rn−1)

+
(rn−2, Arn−1)
(rn−2, rn−2)

}
r0 − AVnŷn,(B.2)

where ŷn ∈ Cn. Comparing the coefficients of r0 in (2.18) and (B.2), we have the following
recurrences:

α0 =
(r0, r0)

(r0, Ar0)
,(B.3)

αn =
1

(rn,Arn)
(rn,rn) + (rn−1,Arn)

(rn−1,rn−1)

(B.4)

=
1

(rn,Arn)
(rn,rn) − 1

αn−1

(rn,rn)
(rn−1,rn−1)

.

99

Here, let us introduce an auxiliary vector pn−1 as

pn−1 =
zn − zn−1

αn−1
∈ Kn(A, r0).(B.5)

Then, it follows from (2.18) that the residual vector rn can be described by using rn−1 and
pn−1.

rn = r0 − Azn = r0 − Azn−1 − αn−1Apn−1 = rn−1 − αn−1Apn−1.(B.6)

Substituting the above formula for (2.18) and using (B.4), it follows that

pn = rn + βn−1pn−1,(B.7)

where βn−1 = (rn, rn)/(rn−1, rn−1). On the other hand, αn−1 can be determined in the
following way: rn is orthogonal to pn−1 by Ritz-Galerkin condition (2.3) and (B.5). From
(B.6), αn−1 can be written as

αn−1 =
(pn−1, rn−1)

(pn−1, Apn−1)
.

Since it follows from (B.7) that (pn, rn) = (rn, rn), we have

αn−1 =
(rn−1, rn−1)

(pn−1, Apn−1)
.

The three-term recurrence relation is obtained by using αn−1 and βn−1.

r1 = r0 − α0Ar0,

rn = (1 +
βn−2

αn−2
αn−1)rn−1 − αn−1Arn−1

−βn−2

αn−2
αn−1rn−2, n = 2, 3,

From (B.7), the approximate solution xn can be calculated as follows:

xn = x0 + zn = x0 + zn−1 + αn−1pn−1 = xn−1 + αn−1pn−1.

From the above we obtain the CG algorithm.

� The MINRES method

The following problem can be efficiently solved by Givens rotations.

yn := arg min
y∈Cn

‖βe1 − Tn+1,ny‖

For simplicity, here we consider the case n = 4. In matrix form βe1 − T5,4y is written as

βe1 − T5,4y =

⎛
⎜⎜⎜⎜⎜⎝

β
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎠−

⎛
⎜⎜⎜⎜⎜⎝

t11 t12
t21 t22 t23

t32 t33 t34
t43 t44

t54

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

y1

y2

y3

y4

⎞
⎟⎟⎟⎠,

100

where tij = tji, 1 ≤ i, j ≤ 4. Let G1 be a matrix of the Givens rotation, i.e.,

G1 =

⎛
⎜⎜⎜⎜⎜⎝

c1 s1

−s̄1 c1

1
1

1

⎞
⎟⎟⎟⎟⎟⎠ with c1 =

|t11|√|t11|2 + |t21|2
, s̄1 =

t21
t11

c1.

Then, G1 is a unitary matrix, and thus ‖βe1 − Tn+1,ny‖ = ‖G1(βe1 − Tn+1,ny)‖. This
leads to

G1(βe1 − T5,4y) =

⎛
⎜⎜⎜⎜⎜⎝

g
(1)
1

g
(1)
2

0
0
0

⎞
⎟⎟⎟⎟⎟⎠−

⎛
⎜⎜⎜⎜⎜⎝

t
(1)
11 t

(1)
12 t

(1)
13

t
(1)
22 t

(1)
23

t32 t33 t34
t43 t44

t54

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

y1

y2

y3

y4

⎞
⎟⎟⎟⎠,

where g
(1)
2 = −s̄1β. Next, let G2 be a unitary matrix defined by

G2 =

⎛
⎜⎜⎜⎜⎜⎝

1
c2 s2

−s̄2 c2

1
1

⎞
⎟⎟⎟⎟⎟⎠ with c2 =

|t(1)22 |√
|t(1)22 |2 + |t32|2

, s̄2 =
t32

t
(1)
22

c2.

Then, G2 and G2G1 are unitary matrices, and thus ‖βe1 − Tn+1,ny‖ = ‖G2G1(βe1 −
Tn+1,ny)‖. This leads to

G2G1(βe1 − T5,4y) =

⎛
⎜⎜⎜⎜⎜⎜⎝

g
(1)
1

g
(2)
2

g
(2)
3

0
0

⎞
⎟⎟⎟⎟⎟⎟⎠−

⎛
⎜⎜⎜⎜⎜⎜⎝

t
(1)
11 t

(1)
12 t

(1)
13

t
(2)
22 t

(2)
23 t

(2)
24

t
(2)
33 t

(2)
34

t43 t44
t54

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

y1

y2

y3

y4

⎞
⎟⎟⎟⎠,

where g
(2)
3 = (−1)2s̄2s̄1β. Similarly, using G3 and G4, we finally obtain

Q4(βe1 − T5,4y) =

⎛
⎜⎜⎜⎜⎜⎜⎝

g
(1)
1

g
(2)
2

g
(3)
3

g
(4)
4

g
(5)
5

⎞
⎟⎟⎟⎟⎟⎟⎠−

⎛
⎜⎜⎜⎜⎜⎜⎝

t
(1)
11 t

(1)
12 t

(1)
13

t
(2)
22 t

(2)
23 t

(2)
24

t
(3)
33 t

(3)
34

t
(4)
44

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

y1

y2

y3

y4

⎞
⎟⎟⎟⎠

=

(
g4

g
(5)
5

)
−
(

R4

0

)
y4,

101

where Q4 = G4G3G2G1 and g
(5)
5 = (−1)4s̄4s̄3s̄2s̄1β. Hence, we obtain y by solving the

following equation:

R4y4 = g4(B.8)

using backward substitution. From the above form, we can know the value of miny ‖βe1 −
T5,4y‖ without solving the equation R4y = g4 since the value satisfies

min
y4∈C4

‖βe1 − T5,4y4‖ = min
y4∈C4

‖Q4(βe1 − T5,4y4)‖ = |g(5)
5 |.

Thus, |g(5)
5 | can be used as the stopping criterion. To obtain the approximate solution, it

follows from (2.31) and (B.8) that

x4 = x0 + V4R
−1
4 g4.

Here, we introduce a matrix P4 := V4R
−1
4 with columns [p1, p2, p3, p4]. Then, we have the

following recurrences:

p1 = v1/t
(1)
11 ,

p2 = (v2 − t
(1)
12 p1)/t

(2)
22 ,

p3 = (v3 − t
(1)
13 p1 − t

(2)
23 p2)/t

(3)
33 ,

p4 = (v4 − t
(2)
24 p2 − t

(3)
34 p3)/t

(4)
44 .

From the above recurrences, it follows that

xi = xi−1 + g
(i)
i pi, i = 1, . . . , 4.

The above computations can be easily generalized, and then Algorithm 2.12 is obtained.

B.2 KS methods for complex symmetric linear systems

� The COCG method

We show a process for obtaining αn−1 and βn−1 using the recurrences (2.32)-(2.34) and the
orthogonality conditions (2.35). For determining αn−1, it follows from (2.33) that the inner
product of Ānr̄0 and rn is computed as

(Ān−1r̄0, rn) = (Ān−1r̄0, rn−1) − αn−1(Ān−1r̄0, Apn−1).

Since Ān−1r̄0 belongs to Kn(Ā, r̄0), it follows that (Ān−1r̄0, rn) = 0 by the conditions
(2.35). Hence, we obtain

αn−1 =
(Ān−1r̄0, rn−1)

(Ān−1r̄0, Apn−1)
.(B.9)

Next, for determining βn−1 it follows from (2.34) that the inner product of Ān−1r̄0 and
Apn is computed as

(Ān−1r̄0, Apn) = (Ān−1r̄0, Arn) + βn−1(Ān−1r̄0, Apn−1).

102

From the conditions (2.35), we have (Ān−1r̄0, Apn) = 0. Thus we obtain

βn−1 = − (Ān−1r̄0, Arn)
(Ān−1r̄0, Apn−1)

= −αn−1
(Ān−1r̄0, Arn)
(Ān−1r̄0, rn−1)

.(B.10)

Here, let us consider deriving practical formulas for αn−1 and βn−1 from (B.9) and (B.10).
Note that from the recurrences (2.32)-(2.34) two vectors r̄n−1 and p̄n−1 can be written as

r̄n−1 = c̄n−1Ā
n−1r̄0 + z̄1, z̄1 ∈ Kn−1(Ā, r̄0),(B.11)

p̄n−1 = c̄n−1Ā
n−1r̄0 + z̄2, z̄2 ∈ Kn−1(Ā, r̄0),(B.12)

where cn−1 = (−1)n−1∏n−2
i=0 αi. Then, from (B.11), (B.12), and the conditions (2.35), the

formula αn−1 in (B.9) can be rewritten by

αn−1 =
(r̄n−1, rn−1) − (z̄1, rn−1)

(p̄n−1, Apn−1) − (z̄2, Apn−1)
=

(r̄n−1, rn−1)
(p̄n−1, Apn−1)

.(B.13)

Similarly, the formula βn−1 in (B.10) can be rewritten by

βn−1 =
(r̄n, rn)

(r̄n−1, rn−1)
.(B.14)

Finally, we give an update formula of the nth approximate solution xn. From the relation
(2.33), and recalling rn = b − Axn, we obtain

xn = xn−1 + αn−1pn−1.(B.15)

From (2.32)-(2.34) and (B.13)-(B.15), the algorithm of COCG is obtained

B.3 KS methods for non-Hermitian linear systems

� The Bi-CG method

We begin with the following recurrences:

rn = rn−1 − αn−1Apn−1,(B.16)
pn = rn + βn−1pn−1.(B.17)

Then, we show that Bi-CG is obtained by (B.16), (B.17), and the Petrov-Galerkin approach
(2.4). Since ((AH)n−1r∗

0, rn) = 0 by the Petrov-Galerkin approach (2.4), it follows from
(B.16) that αn−1 is given as follows:

αn−1 =
((AH)n−1r∗

0, rn−1)
((AH)n−1r∗

0, Apn−1)
.(B.18)

The inner product of z ∈ Kn−1(AH, r∗
0) and (B.16) gives the form

(z, rn) = (z, rn−1) − αn−1(z, Apn−1).

From the condition (2.4), it follows that (z, rn) = (z, rn−1) = 0. Thus, we have the
orthogonality

Apn−1 ⊥ Kn−1(AH, r∗
0).(B.19)

103

To obtain the computational formula for βn−1, let us consider the inner product of (AH)n−1r∗
0

and (B.17) multiplied by A that gives the form

((AH)n−1r∗
0, Apn) = ((AH)n−1r∗

0, Arn) + βn−1((AH)n−1r∗
0, Apn−1)

= ((AH)nr∗
0, rn) + βn−1((AH)n−1r∗

0, Apn−1)
= 0.

Then, the original form of βn−1 can be given as follows:

βn−1 = − ((AH)nr∗
0, rn)

((AH)n−1r∗
0, Apn−1)

.

Moreover, making use of the formula (B.18), we obtain another original form for βn−1.

βn−1 = −αn−1
((AH)nr∗

0, rn)
((AH)n−1r∗

0, rn−1)
.(B.20)

Similarly, let us define residual vectors r∗
n ∈ Kn+1(AH, r∗

0) as the two-term recurrences

r∗
n = r∗

n−1 − ᾱn−1A
Hp∗

n−1,

p∗
n = r∗

n + β̄n−1p
∗
n−1,

where p∗
0 = r∗

0. From the above, the vectors r∗
n−1 and p∗

n−1 can be expanded as

r∗
n−1 = R̄n−1(AT)r∗

0 =
(
(−1)n−1

n−2∏
i=0

ᾱi

)
(AH)n−1r∗

0 + z1,

p∗
n−1 = P̄n−1(AT)r∗

0 =
(
(−1)n−1

n−2∏
i=0

ᾱi

)
(AH)n−1r∗

0 + z2,

where z1, z2 ∈ Kn−1(AH, r∗
0). Thus the αn−1 and βn−1 can be computed by Petrov-Galerkin

condition (2.4) and orthogonality property (B.19) and the following relations:

(r∗
n−1, rn−1) = (c̄(AH)n−1r∗

0, rn−1) + (z1, rn−1)
= c((AH)n−1r∗

0, rn−1),
(p∗

n−1, Apn−1) = (c̄(AH)n−1r∗
0, Apn−1) + (z2, Apn−1)

= c((AH)n−1r∗
0, Apn−1),

where c̄ = (−1)n−1∏n−2
i=0 ᾱi. Substituting the above formulas for (B.18) and (B.20), we

obtain

αn−1 =
(r∗

n−1, rn−1)
(p∗

n−1, Apn−1)
, βn−1 =

(r∗
n, rn)

(r∗
n−1, rn−1)

.

From the above, we obtain Algorithm 2.16.

� KS methods based on normal equations

Here, we consider how to use CG for solving non-Hermitian linear systems. Since the

104

coefficient matrix A is non-Hermitian, CG can not be applied to the system Ax = b;
however, if we consider the following normal equations:

AHAx = AHb(B.21)
or
AAHy = b, x = AHy,(B.22)

then it is natural to solve the above equations by CG since AHA and AAH are Hermitian
positive definite. If we apply CG to (B.21), then we have the CGNR method (or CGLS)
[53] given below:

Algorithm B.1: CGNR method

x0 is an initial guess, r0 = b − Ax0, β−1 = 0,

for n = 0, 1, . . . ,until ‖rn‖ ≤ ε‖b‖ do:
pn = AHrn + βn−1pn−1,

αn =
(AHrn, AHrn)
(Apn, Apn)

,

xn+1 = xn + αnpn,

rn+1 = rn − αnApn,

βn =
(AHrn+1, A

Hrn+1)
(AHrn, AHrn)

.

end

It is clear from the algorithm of CGNR and (2.27) that it minimizes the AHA-norm of the
error, or the 2-norm of the residual vector:

min
xn∈x0+Kn(AHA,AHr0)

‖x∗ − xn‖AHA = min
xn∈x0+Kn(AHA,AHr0)

‖rn‖.

On the other hand, if we apply CG to (B.22), then we have the CGNE method [18] (or
Craig’s method) given below:

Algorithm B.2: CGNE method

x0 is an initial guess, r0 = b − Ax0, β−1 = 0,

for n = 0, 1, . . . ,until ‖rn‖ ≤ ε‖b‖ do:
pn = AHrn + βn−1pn−1,

αn =
(rn, rn)
(pn, pn)

,

xn+1 = xn + αnpn,

rn+1 = rn − αnApn,

βn =
(rn+1, rn+1)

(rn, rn)
.

end

It is clear from the algorithm of CGNE and (2.27) that it minimizes the AAH-norm of the
error:

min
yn∈y0+Kn(AAH,r0)

‖y∗ − yn‖AHA.

105

It follows from the above fact and yn = A−Hxn that CGNE generates xn such that

min
xn∈x0+AHKn(AAH,r0)

‖x∗ − xn‖ = min
xn∈x0+Kn(AHA,AHr0)

‖x∗ − xn‖.

The convergence of CGNR and CGNE is optimal in some special cases [40, 61]. How-
ever, since the condition number of AAH is twice as that of A, it may lead to deteriorate
convergence behavior by Theorem 2.4.1.

If the coefficient matrix is ill-conditioned, LSQR [63] is often preferred. This algorithm
is based on the Golub-Kahan bidiagonalization process [46] and the process is obtained by
applying the Lanczos process to(

I A
AH O

)(
r
x

)
=
(

b
0

)
or Ãx̃ = b̃.

The process begins with a unit vector:

w1 :=
(

u1

0

)
=

1
‖b‖
(

b
0

)
.

Let us define h0,1 := ‖b‖, then we have h01u1 = b. For the first step, it follows from the
Lanczos process that

w̃2 = Ãw1 − α1w1 =
(

0
AHu1

)
,

w2 =
(

0
v1

)
=

1
‖AHu1‖

(
0

AHu1

)
,

where using h1,1 := ‖AHu1‖, it follows that h1,1v1 = AHu1. For the second step, we have

w̃3 = Ãw2 − α2w2 − β1w1 =
(

Av1 − β1u1

0

)
,

w3 =
(

u2

0

)
=

1
‖Av1 − h1,1u1‖

(
Av1 − h1,1u1

0

)
.

Similar to the above definitions, h2,1 := ‖Av1 − h1,1u1‖ gives h2,1u2 = Av1 − h1,1u1. For
the third step, it follows that

w̃4 = Ãw3 − α3w3 − β2w2 =
(

0
AHu2 − β2v1

)
,

w4 =
(

0
v2

)
=

1
‖AHu2 − h2,1v1‖

(
0

AHu2 − h2,1v1

)
.

From the above, we have h2,2v2 = AHu2 − h2,1v1 where h2,2 := ‖AHu2 − h2,1v1‖. Hence,
from the above recurrences, we have the following matrix form:

Av1 = [u1, u2]
(

h1,1

h2,1

)
⇐⇒ AV1 = U2B2,1,

AH[u1, u2] = [v1, v2]
(

h1,1 h2,1

h2,2

)
⇐⇒ AHU2 = V1B

T
2,1 + h2,2v2e

T
2 .

From the above results, it can be easily generalized, and the generalization leads to the
following Golub-Kahan bidiagonalization process [46]:

106

Algorithm B.3: The Golub-Kahan bidiagonalization process

set h0,1 = ‖b‖, u1 = b/h0,1,

set h1,1 = ‖AHu1‖, v1 = AHu1/h1,1,

for n = 1, 2, . . .

ũn+1 = Avn − hn,nun,

hn+1,n = ‖ũn+1‖,
un+1 = ũn+1/hn+1,n,

ṽn+1 = AHun+1 − hn+1,nvn,

hn+1,n+1 = ‖ṽn+1‖,
vn+1 = ṽn+1/hn+1,n+1.

end

The above process can be written in matrix form

AVn = Un+1Bn+1,n,(B.23)
AHUn+1 = VnBT

n+1,n + hn+1,n+1vn+1e
T
n+1,

where

Un := [u1, . . . ,un], Vn := [v1, . . . ,vn], Bn+1,n :=

⎛
⎜⎜⎜⎜⎝

h1,1

h2,1
. . .
. . . hn,n

hn+1,n

⎞
⎟⎟⎟⎟⎠ .

It is clear from the bidiagonalization process that Un and Vn satisfy the following properties:

UH
n Un = V H

n Vn = In.(B.24)

Now, we are ready for the derivation of LSQR. The LSQR method generates the nth
approximate solution with Vn and x0 = 0, i.e., xn = Vnyn, where y is determined by
minimizing the 2-norm of the corresponding residual vector

rn = b − AVnyn.(B.25)

The minimization can be achieved by using the property (B.24). Substituting (B.23) into
(B.25) leads to

rn = b − Un+1Bnyn

= Un+1(h0,1e1 − Bn+1,nyn).

From the property (B.24) it follows that

min
yn∈Cn

‖rn‖ = min
yn∈Cn

‖h0,1e1 − Bn+1,nyn‖.

Hence, similar to MINRES, yn can be obtained by using Givens rotations and triangular-
solve, and by analogy with the derivation of MINRES, we readily have the following LSQR
algorithm:

107

Algorithm B.4: LSQR method

set x0 = 0, h0,1 = ‖b|, u1 = b/h0,1,

set h1,1 = ‖AHu1‖, v1 = AHu1/h1,1,

for n = 1, 2, . . . , do:
(G-K bidiagonalization process)

ũn+1 = Avn − hn,nun,

hn+1,n = ‖ũn+1‖,
un+1 = ũn+1/hn+1,n,

ṽn+1 = AHun+1 − hn+1,nvn,

hn+1,n+1 = ‖ṽn+1‖,
vn+1 = ṽn+1/hn+1,n+1,

(Givens rotations)
for i = max{1, n − 1}, . . . , n − 1 do:(

ti,n
ti+1,n

)
=
(

ci si

−s̄i ci

)(
ti,n

ti+1,n

)
,

end

cn =
|tn,n|√

|tn,n|2 + |tn+1,n|2
,

s̄n =
tn+1,n

tn,n
cn,

tn,n = cntn,n + sntn+1,n,

tn+1,n = 0,(
gn

gn+1

)
=
(

cn sn

−s̄n cn

)(
gn

0

)
,

(Update xn)
pn = (vn − tn−1,npn−1)/tn,n,

xn = xn−1 + gnpn,

(Check convergence)
if |gn+1|/‖b‖ ≤ ε, then stop.

end

� KS methods based on the Arnoldi process

Here, we describe algorithms that are based on the Arnoldi process and minimal residual
approach. One of the most successful algorithms based on the Arnoldi process is the
Generalized Minimal RESidual (GMRES) method proposed by Saad and Schultz [71].

The derivation process of GMRES is closely related to MINRES. This method generates
xn that minimizes ‖b−Axn‖ over the affine space x0+Kn(A, r0). It is known that this can
be efficiently achieved by using the Arnoldi process. Now, we give the derivation process
of the GMRES method. Let Vn be the orthonormal basis of Kn(A, r0). Then, since xn lies
in the affine space x0 + Kn(A, r0), we have

xn = x0 + Vnyn, yn ∈ Cn.

The corresponding residual vector is written as

rn = r0 − AVnyn.

From the Arnoldi process it follows that

rn = Vn+1(βe1 − Hn+1,nyn),

where β := ‖r0‖. Hence, the 2-norm of the residual vector can be minimized by choosing
yn such that

yn := arg min
y∈Cn

‖βe1 − Hn+1,ny‖.

The vector yn can be readily obtained by using Givens rotations. Since Vn+1 satisfies
V H

n+1Vn+1 = In+1, we have the relation ‖rn‖ = ‖yn‖. Hence, we can use the value of ‖yn‖
as the stopping criterion instead of the direct computation of ‖rn‖.

108

Now, we describe the algorithm of GMRES below. The following algorithm is based on
the Arnoldi process with modified Gram-Schmidt.

Algorithm B.5: GMRES method with MGS

x0 is an initial guess, r0 = b − Ax0,

set g = (‖r0‖, 0, . . . , 0)T, v1 = r0/‖r0‖,
for n = 1, 2, . . . , do:
(Arnoldi process with MGS)

t = Avn,

for i = 1, 2, . . . , n do:
hi,n = (vi, t),
t = t − hi,nvi,

end
hn+1,n = ‖t‖,
vn+1 =

t

hn+1,n
,

(Givens rotations)
for i = 1, . . . , n − 1 do:(

hi,n

hi+1,n

)
=
(

ci si

−s̄i ci

)(
hi,n

hi+1,n

)
,

end

cn =
|hn,n|√

|hn,n|2 + |hn+1,n|2
,

s̄n =
hn+1,n

hn,n
cn,

hn,n = cnhn,n + snhn+1,n,

hn+1,n = 0,(
gn

gn+1

)
=
(

cn sn

−s̄n cn

)(
gn

0

)
,

(Update xn)
(Check convergence)

if |gn+1| ≤ ε‖b‖, then
xn = x0 + VnH−1

n gn.

end if and stop
end

The above algorithm is also referred to as the full GMRES method. This method finds
approximate solution xn such that

min
xn∈x0+Kn(A,r0)

‖rn‖ or rn ⊥ AKn(A, r0).

From the above property, we see that the residual 2-norm decreases monotonically and that
in exact arithmetic this method converges in at most N iterations. However, computational
work and memory increase linearly with the number of iterations. To remedy this difficulty,
Saad and Schultz proposed restarted version of GMRES denoted by GMRES(m).

Algorithm B.6: GMRES(m) method with MGS

x0 is an initial guess, r0 = b − Ax0,

set g = (‖r0‖, 0, . . . , 0)T, v1 = r0/‖r0‖,
for n = 1, 2, . . . , m do:
(Arnoldi process with MGS)

t = Avn,

for i = 1, 2, . . . , n do:
hi,n = (vi, t),
t = t − hi,nvi,

end

hn+1,n = ‖t‖,
vn+1 =

t

hn+1,n
,

(Givens rotations)
for i = 1, . . . , n − 1 do:(

hi,n

hi+1,n

)
=
(

ci si

−s̄i ci

)(
hi,n

hi+1,n

)
,

end

cn =
|hn,n|√

|hn,n|2 + |hn+1,n|2
,

109

s̄n =
hn+1,n

hn,n
cn,

hn,n = cnhn,n + snhn+1,n,

hn+1,n = 0,(
gn

gn+1

)
=
(

cn sn

−s̄n cn

)(
gn

0

)
,

(Update xn)
(Check convergence)

if |gn+1| ≤ ε‖b‖, then
xn = x0 + VnH−1

n gn,

end if and stop
end

xn = x0 + VnH−1
n gn,

x0 = xn.

repeat

Althogh GMRES(m), in exact arithmetic, does not guarantee the convergence in at most
N iterations, it is practical and useful for solving non-Hermitian linear systems.

To improve the accuracy of orthogonality of the Arnoldi basis, a Householder variant
of the Arnoldi process was developed by Walker [92]. GMRES with the Householder or-
thogonalization is numerically, as we can expect, better than GMRES with CGS and MGS
though the double of the computational cost is required for orthogonalization procedure.
The comparison of computational costs and required memory is made in [70, p.158].

The GCR method

The Generalized Conjugate Residual (GCR) method [31] is another Krylov solver based on
the Arnoldi process. The algorithm is obtained by the following Arnoldi process with the
weight AHA:

set v1 =
r0

‖r0‖AHA

,

for n = 1, 2, . . . , do:
hi,n = (vi, Avn)AHA, i = 1, 2, . . . , n,

ṽn+1 = Avn −
n∑

i=1

hi,nvi,(B.26)

hn+1,n = ‖ṽn+1‖AHA,

vn+1 =
ṽn+1

hn+1,n
.

end

This generates AHA-orthonormal vectors, i.e.,

(Avi, Avj) = 0 for i �= j.

Let Vn be a matrix with columns [v0, . . . ,vn−1]. Then, GCR generates xn = x0 + Vnyn

such that min ‖rn‖. The corresponding residual vector can be written as

rn = r0 − AVnyn = r0 −
n∑

i=1

yiAvi.(B.27)

From the above relation, we have

rn = rn−1 − ynAvn.(B.28)

110

Since Avi is an orthonormal vector, to minimize the residual 2-norm, yi is determined by

yi = (Avi, r0), i = 1, . . . , n.

Here, we define the vector pn := −ynv̂n+1. Then, it follows from (B.26) that

pn = −ynAvn −
n∑

i=1

(vi,−ynAvn)AHAvi.

Substituting (B.28) in the precious recurrence, we have

pn = rn − rn−1 −
n∑

i=1

(vi, rn − rn−1)AHAvi(B.29)

= rn −
n∑

i=1

(vi, rn)AHAvi−
(

rn−1 −
n∑

i=1

(vi, rn−1)AHAvi

)
.

Since rn−1 lies in Kn(A, r0), it can be expanded as

rn−1 =
n∑

i=1

(vi, rn−1)AHAvi.(B.30)

Hence, from (B.29) and (B.30), the vector pn can be written as

pn = rn −
n∑

i=1

(vi, rn)AHAvi.(B.31)

On the other hand, pn and vn+1 are related with

pn = − yn

|yn|‖Apn‖vn+1

since it follows that

pn = −ynv̂n+1

= −yn‖v̂n+1‖AHAvn+1

= −yn

√
(Av̂n+1, Av̂n+1) vn+1

= −yn

√
(− 1

yn
Apn,− 1

yn
Apn) vn+1

= − yn

|yn|
√

(Apn, Apn) vn+1.

Hence, using vn = − |yn−1|
yn−1

· pn−1

‖Apn−1‖ , we have the following relations:

ynAvn = (Avn, r0)Avn =
(Apn−1, r0)

(Apn−1, Apn−1)
Apn−1,

(vi, rn)AHAvi =
(Api−1, Arn)

(Api−1, Api−1)
pi−1.

111

Therefore, substituting the above results for (B.28) and (B.31), we have

rn = rn−1 − (Apn−1, r0)
(Apn−1, Apn−1)

Apn−1,

pn = rn −
n∑

i=1

(Api−1, Arn)
(Api−1, Api−1)

pi−1.

From (B.27) and the fact that pn−1 ∈ span{vn} is AHA-orthogonal to v1, . . . ,vn−1, it
follows that

(Apn−1, rn−1) = (Apn−1, r0) −
n−1∑
i=1

yi(Apn−1, Avi) = (Apn−1, r0).

Now, let us define αn−1 and βn−1,i as

αn−1 =
(Apn−1, rn−1)

(Apn−1, Apn−1)
,(B.32)

βn−1,i = − (Api−1, Arn)
(Api−1, Api−1)

.(B.33)

Then, we have

rn = rn−1 − αn−1Apn−1,(B.34)

pn = rn +
n∑

i=1

βn−1,ipi−1.(B.35)

From the recurrence relation of the residual vector, we obtain

xn = xn−1 + αn−1pn−1.(B.36)

To reduce the number of matrix-vector multiplications, use the following recurrences:

Apn = Arn +
n∑

i=1

βn−1,iApi−1.(B.37)

From (B.32)-(B.37), the algorithm of GCR is obtained below:

Algorithm B.7: GCR

x0 is an initial guess, r0 = b − Ax0, p0 = r0,

for n = 0, 1, . . . ,until ‖rn‖ ≤ ε‖b‖ do:

αn =
(Apn, rn)

(Apn, Apn)
,

xn+1 = xn + αnpn,

rn+1 = rn − αnApn,

βn,i = −(Api−1, Arn+1)
(Api−1, Api−1)

, 1 ≤ i ≤ n + 1,

pn+1 = rn+1 +
n+1∑
i=1

βn,ipi−1,

(Apn+1 = Arn+1 +
n+1∑
i=1

βn,iApi−1.)

end

112

The properties of GCR are given below [31, Theorem 3.1].

(G1) (Api, Apj) = 0, i �= j,

(G2) (ri, Apj) = 0, i > j,

(G3) (ri, Api) = (ri, Ari),

(G4) (ri, Arj) = 0, i > j,

(G5) (ri, Api) = (r0, Api), i ≥ j.

From the above properties, we can see that the previous derivation is based on the prop-
erty (G1). We can also derive the algorithm of GCR based on (G4) by using an A-
orthogonalization process of the Krylov subspace.

In exact arithmetic, GCR as well as GMRES converges in at most N iterations. How-
ever, GCR has the same difficulty as GMRES in that the computational work and the
required memory increase linearly with the number of iterations. Hence, restarted version
of GCR which is referred to as GCR(k) was proposed [31].

Algorithm B.8: GCR(k)

x0 is an initial guess, r0 = b − Ax0, p0 = r0,

for n = 0, 1, . . . , k until ‖rn‖ ≤ ε‖b‖ do:

αn =
(Apn, rn)

(Apn, Apn)
,

xn+1 = xn + αnpn,

rn+1 = rn − αnApn,

βn,i = −(Api−1, Arn+1)
(Api−1, Api−1)

, 1 ≤ i ≤ n + 1,

pn+1 = rn+1 +
n+1∑
i=1

βn,ipi−1,

(Apn+1 = Arn+1 +
n+1∑
i=1

βn,iApi−1,)

end
x0 = xk+1.

repeat

Another alternative is to save only k direction vectors:

pn+1 = rn+1 +
min{k,n+1}∑

i=1

βn,ipi−1.

This method is known as Orthomin(k)[31]. Note that the Orthomin method was originally
proposed by Vinsome [91].

113

Algorithm B.9: Orthomin(k)

x0 is an initial guess, r0 = b − Ax0, p0 = r0,

for n = 0, 1, . . . ,until ‖rn‖ ≤ ε‖b‖ do:

αn =
(Apn, rn)

(Apn, Apn)
,

xn+1 = xn + αnpn,

rn+1 = rn − αnApn,

βn,i = −(Api−1, Arn+1)
(Api−1, Api−1)

, n − k + 2 ≤ i ≤ n + 1,

pn+1 = rn+1 +
min{k,n+1}∑

i=1

βn,ipi−1.

(Apn+1 = Arn+1 +
n+1∑
i=1

βn,iApi−1,)

end
x0 = xn+1.

repeat

The following theorem for GCR, GCR(k), and Orthomin(k) is given by Eisenstat et al.:

Theorem B.3.1 (Eisenstat et al. [31, Theorem 4.4]) Let M be the Hermitian part of
A and let R be the skew-Hermitian part of A. If {rn} is the sequence of residuals generated
by GCR, GCR(k), or Orthomin(k), then

‖rn‖ ≤
(

1 − λmin(M)2

λmax(AHA)

)n/2

‖r0‖,

and

‖rn‖ ≤
(

1 − λmin(M)2

λmin(M)λmax(M) + ρ(R)2

)n/2

‖r0‖.

We can see from the above theorem that if A is close to I, then the three methods converge
fast since λmin(M) ≈ λmax(M) ≈ 1 and R ≈ O.

114

Appendix C

Other preconditioners

C.1 Preconditioners based on stationary iterative methods

The Jacobi (or diagonal) preconditioner is the simplest preconditioner and usually more
effective than solving original linear systems Ax = b. The Jacobi preconditioner is con-
structed by using only diagonal entries of the coefficient matrix as follows:

KJ := diag(a1,1, a2,2, . . . , an,n).

Under some conditions, it is shown that the Jacobi preconditioning is optimal, or close to
optimal, in the sense of reducing the condition number of a matrix A. This was proved by
Forsythe and Strauss [36], and van der Sluis [85].

The symmetric Gause-Seidel (SGS) preconditioner uses more information of A than the
Jacobi preconditioner. SGS is named after the Gause-Seidel method widely known as one
of the stationary iterative methods. The preconditioner is defined as

KSGS := (D − L)D−1(D − U),

where A := D − L − U. If the diagonal elements of A are scaled to all one, then we have
simpler preconditioner:

KSGS = (I − L)(I − U).

In this case, a very efficient implementation can be used. From the above preconditioner,
we solve

(I − L)−1A(I − U)−1x̃ = b̃, x̃ = (I − U)x, b̃ = (I − L)−1b.

Hence, when we use preconditioned Krylov subspace methods, we need to compute the
following matrix-vector multiplication:

(I − L)−1A(I − U)−1z.

When the cost of the matrix-vector product Az is dominant in one iteration, this usually
leads to about double computational cost per iteration. However, recalling A = I −L−U ,
we have

(I − L)−1A(I − U)−1 = (I − L)−1(I − L − U)(I − U)−1

115

= (I − L)−1
{

(I − L) + (I − U − I)
}

(I − U)−1

= (I − L)−1
{

(I − L)(I − U)−1 + I − (I − U)−1
}

= (I − U)−1 + (I − L)−1
{

I − (I − U)−1
}

.

Thus, we obtain

(I − L)−1A(I − U)−1z = (I − U)−1z + (I − L)−1
{

I − (I − U)−1
}

z

= t + (I − L)−1(z − t),

where t := (I − U)−1z. Hence, we see that the cost of the above operation is only about
one matrix-vector multiplication. This implementation is one of Eisenstat’s tricks [30].

The Symmetric Successive OverRelaxation (SSOR) preconditioner is regarded as an
extension of the SGS preconditioner. The preconditioner is defined as

KSSOR := (D̃ − L)D̃−1(D̃ − U), D̃ = D/ω.

Note that the choice ω = 1 leads to KSGS . The Eisenstat’s trick is then given as follows:
from A = D − L − U and Ã = (D̃ − L)−1A(D̃ − U)−1, we have

Ãz = (D̃ − L)−1A(D̃ − U)−1z

= (D̃ − L)−1
{

(D̃ − L) + (D − 2D̃) + (D̃ − U)
}

(D̃ − U)−1z

= (D̃ − U)−1z + (D̃ − L)−1(D − 2D̃)(D̃ − U)−1z + (D̃ − L)−1z

= t + (D̃ − L)−1
{

(D − 2D̃)t + z

}
,

where t = (D̃ − U)−1z.

C.2 Approximate inverses and polynomial preconditioners

In the previous preconditioners, their performances depend on how close to A the product of
the factorized matrices L̃Ũ is. Here, we describe another criterion for a good preconditioner.
That is how close to A−1 the preconditioning matrix is. Based on the criterion, Grote and
Huckle [50] attempt to minimize the following Frobenius norm:

min
K

‖I − AK‖F ,

where ‖A‖F =
√∑

i,j a2
i,j . Since the above minimization can be written as

min
K

∥∥∥∥[e1 − Ak1, e2 − Ak2, . . . ,eN − AkN

]∥∥∥∥
F
,

we have N independent least squares problems

min
ki

‖ei − Aki‖, i = 1, . . . , N.

116

Hence, the construction of this proconditioner is very suitable for parallel computing.
Another outstanding idea for approximate inverses was given by Benzi and Tůma [9].

This idea is finding nonsingular matrices V and W such that

WHAV = D.(C.1)

Then, it follows from (WHAV)−1 = V −1A−1W−H = D−1 that the inverse of the matrix A
is given as

A−1 = V D−1WH.

Since the equation (C.1) implies (wi, Avj) = 0 for i �= j, V and W are computed by an
A-biorthogonalization process. In the following algorithm, ai and ci denote the ith column
of A and AH respectively.

Algorithm C.1: Approximate inverse (AINV)

set w
(0)
i = v

(0)
i = ei, 1 ≤ i ≤ N,

for i = 1, . . . , N do:
for j = i, . . . , N do:

p
(i−1)
j = aH

i v
(i−1)
j , q

(i−1)
j = cH

i w
(i−1)
j ,

end
if i = N exit
for j = i + 1, . . . , N

v
(i)
j = v

(i−1)
j −

(
p
(i−1)
j

p
(i−1)
i

)
v

(i−1)
i , w

(i)
j = w

(i−1)
j −

(
q
(i−1)
j

q
(i−1)
i

)
w

(i−1)
i ,

v
(i)
k,j = 0 if |v(i)

k,j | < Tol, 1 ≤ k ≤ N, w
(i)
k,j = 0 if |w(i)

k,j | < Tol, 1 ≤ k ≤ N,

end
end
set zi = z

(i−1)
i , wi = w

(i−1)
i , pi = p

(i−1)
i , 1 ≤ i ≤ N,

set V = [v1, v2, . . . ,vN], V = [w1, w2, . . . ,wN], D = diag(p1, p2, . . . , pN).

From the above algorithm, we see that it uses a MGS-style A-biorthogonalization process
and is used for a general non-Hermitian matrix. For Hermitian and normal matrices, the
corresponding approximate inverse preconditioners have been developed. See [7] and [11].

Polynomial preconditioner

We have described two types of preconditioners. One of which is approximating the coeffi-
cient matrix and the preconditioner can be easily solved. The other one is approximating
the inverse of the coefficient matrix. Here, we describe another approach that is closely
related to sparse approximate inverses. Since this approach is based on matrix polynomials,
it is referred to as polynomial preconditioner.

One of the most well-known polynomial preconditioners is a Neumann expansion and
a Euler expansion. Let A be of the form I − B with ρ(B) < 1. Then, we can write the
inverse matrix of A as

A−1 =
∞∑
i=0

Bi (Neumann expansion)

117

=
∞∏
i=0

(I + B2i
). (Euler expansion)

Hence, from the above expansions, we can readily obtain and moreover control an approx-
imate inverse of A by using the low order terms of a Neumann (or Euler) expansion. The
results were reported in [24].

C.3 Reorderings for preconditioners

In the previous subsections, we have considered some preconditioning techniques for solving
original systems effectively. On the other hand, it is natural to find effective reorderings to
improving the performance of preconditioners, e.g., apply Krylov subspace methods to the
following systems with a reordering matrix P :

K−1PAPTx̃ = b̃,

where x̃ = Px, b̃ = K−1Pb. From this idea, we can use many reordering techniques for the
efficient implementation of the LU decomposition such as Cuthill-Mckee (CM) [19], Reverse
Cuthill-Mckee (RCM) [42], Nested Dissection (ND) [43], and Minimum Degree (MD) [44].
For description of algorithms see, e.g., [25, 58, 70]. CM and RCM decrease the bandwidth
of a matrix, MD reduces the number of fill-in of an original matrix, and ND generates an
approximate block diagonal matrix and is suitable for parallel computing.

For symmetric definite case (preconditioned CG), Duff and Meurant gave important
results on the effects of reorderings that reordering techniques for direct solvers did not
enhance the quality of preconditioners [27].

For nonsymmetric case, Saad experimentally showed that MD and ND reorderings be-
fore ILUT preconditioning gave no advantage over the original systems and only RCM
was the most likely to yield an improvement [70, p.334]. On the other hand, Benzi et al.
[8] studied the effects of reorderings on ILU -type preconditioner and gave the result that
RCM dramatically enhanced the preconditioner in the case where the coefficient matrix is
highly nonsymmetric. Similar results of the effects on approximate inverse preconditioners
are also discussed in [10].

118

Acknowledgements

First of all, I would like to give my great thanks to my adviser Prof. S.-L. Zhang at
Nagoya University. He introduced me into this very interesting field of Krylov subspace
methods and offered many opportunities of my research talks at various conferences. Need-
less to say, were it not for his continuous support, I could not make my research so smooth.

I am grateful to Prof. M. Sugihara at the University of Tokyo for the careful reading
and some important comments on a paper of the Bi-CR method which is one of the main
topics of the present thesis. I am also grateful to Prof. M. H. Gutknecht at ETH Zürich
for providing some references and fruitful discussion on Bi-CR.

I am thankful to Prof. K. Abe at Gifu Shotoku Gakuen University and Prof. C.-H. Jin
at the University of Tokushima. They gave me some important comments on the SCGS
method.

I would like to thank Prof. S. Fujino at Kyushu University. He suggested to me
that I should investigate the dependency of a shadow vector on the convergence behavior
of product-type methods, and introduced me to many researchers for obtaining complex
symmetric matrices. I would like to thank Prof. T. Sakurai at the University of Tsukuba for
discussion on eigenvalue problems. He informed me of the strong need for solving complex
symmetric linear systems efficiently. I appreciate discussion with Prof. Y. Yamamoto at
Nagoya University and the use of his work station with Opteron processor. I am also
thankful to Dr. T. Hoshi at the University of Tokyo for providing complex symmetric
matrices arising from large-scale electronic structure theory.

I am grateful to Prof. T. Fujiwara, Prof. K. Murota, and Prof. Y. Hatsugai at the
University of Tokyo for the careful reading of the thesis and useful comments that improved
its quality.

Finally, I wish to thank my loving wife, Li Yuan, for her day-to-day support and thank
my parents, Tsutao and Chiaki, for financial support.

119

Bibliography

[1] W. E. Arnoldi, The principle of minimized iteration in the solution of the matrix
eigenvalue problem, Quart. Appl. Math., 9(1951), pp. 17-29.

[2] S. F. Ashby, T. A. Manteuffel, and P. E. Saylor, A taxonomy for conjugate gradient
methods, SIAM J. Numer. Anal., 27(1990), pp. 1542-1568.

[3] Z. Bai, D. Day, J. Demmel, and J. Dongarra, A test matrix collection for non-
Hermitian eigenvalue problems, Technical Report CS-97-355, Department of Com-
puter Science, University of Tennessee, Knoxville, TN, March, 1997.

[4] R. E. Bank and T. F. Chan, An analysis of the composite step biconjugate gradient
method, Numer. Math., 66(1994), pp. 295-319.

[5] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R.
Pozo, C. Romine, and H. van der Vorst, Templates for the solution of linear systems:
building blocks for iterative methods, 2nd ed., SIAM, Philadelphia, PA, 1994.

[6] A. Bayliss, C. I. Goldstein, and E. Turkel, An iterative method for the Helmholtz
equation, J. Comput. Phys., 49(1983), pp. 443-457.

[7] M. Benzi, C. D. Meyer, and M. Tůma, A sparse approximate inverse preconditioner
for the conjugate gradient method, SIAM J. Sci. Comput., 17(1996), pp. 1135-1149.

[8] M. Benzi, D. B. Szyld, and A. van Duin, Orderings for incomplete factorization
preconditioning of nonsymmetric problems, SIAM J. Sci. Comput., 20(1999), pp.
1652-1670.

[9] M. Benzi and M. Tůma, A sparse approximate inverse preconditioner for nonsym-
metric linear systems, SIAM J. Sci. Comput., 19(1998), pp. 968-994.

[10] M. Benzi and M. Tůma, Orderings for factorized sparse approximate inverse precon-
ditioners, SIAM J. Sci. Comput., 21(2000), pp. 1851-1868.

[11] M. Benzi and M. Tůma, A robust preconditioner with low memory requirements for
large sparse least squares problems, SIAM J. Sci. Comput., 25(2003), pp. 499-512.

[12] Å. Björck, Solving linear least squares problems by Gram-Schmidt orthogonalization,
BIT, 7(1967), pp. 1-21.

[13] C. G. Broyden and M. A. Boschetti, A comparison of three basic conjugate direction
methods, Num. Lin. Alg. Appl., 3(1996), pp. 473-489.

120

[14] A. Bunse-Gerstner and R. Stöver, On a conjugate gradient-type method for solving
complex symmetric linear systems, Lin. Alg. Appl., 287(1999), pp. 105-123.

[15] T. F. Chan, E. Gallopoulos, V. Simoncini, T. Szeto, and C. H. Tong, A quasi-minimal
residual variant of the Bi-CGSTAB algorithm for nonsymmetric systems, SIAM J.
Sci. Comput., 15(1994), pp. 338-347.

[16] M. Clemens and T. Weiland, Comparison of Krylov-type methods for complex linear
systems applied to high-voltage problems, IEEE Trans. Mag., 34:5(1998), pp. 3335-
3338.

[17] J. Collum and A. Greenbaum, Relations between Galerkin and norm-minimizing it-
erative methods for solving linear systems, SIAM J. Matrix Anal. Appl., 17(1996),
pp. 223-247.

[18] E. J. Craig, The N-step iteration procedures, J. Math. and Phys., 34(1955), pp. 64-73.

[19] E. Cuthill and J. McKee, Reducing the bandwidth of sparse symmetric matrices, in:
Proceedings of the ACM National Conference, Association for Computing Machinery,
New York, NY, (1969), pp. 157–172.

[20] J. W. Daniel, W. B. Gragg, L. Kaufmann, and G. W. Stewart, Reorthogonaliza-
tion and stable algorithms for updating the Gram-Schmidt QR factorization, Math.
Comp., 30(1976), pp. 772-795.

[21] T. Davis, University of Florida sparse matrix collection, NA Digest, 97(23), June 7,
1997.

[22] T. A. Davis and I. S. Duff, A combined unifrontal/multifrontal method for unsymmet-
ric sparse matrices, Technical Report TR-95-020, Computer and Information Sciences
Department, University of Florida, Gainesville, 1995.

[23] J. W. Demmel, S. C. Eisenstat, J. R. Gilbert, X. S. Li, and J. W. H. Liu, A supernodal
approach to sparse partial pivoting, SIAM J. Matrix Anal. Appl., 20(1999), pp. 720-
755.

[24] P. F. Dubois, A. Greenbaum, and G. H. Rodrigue, Approximating the inverse of a
matrix for use in iterative algorithms on vector processors, Computing, 22(1979), pp.
257-268.

[25] I. S. Duff, A. M. Erisman and J. K. Reid, Direct methods for sparse matrices, Oxford
University Press, Oxford, 1986.

[26] I. S. Duff, R. G. Grimes, and J. G. Lewis, User’s guide for the Harwell-Boeing sparse
matrix collection, Technical Report RAL-92-086, Rutherford Appleton Laboratory,
Chilton, UK, 1992.

[27] I. S. Duff and G. A. Meurant, The effect of ordering on preconditioned conjugate
gradients, BIT, 29(1989), pp. 635–657.

[28] I. S. Duff and J. K. Reid, The multifrontal solution of indefinite sparse symmetric
linear equations, ACM Trans. Math. Software, 9(1983), pp. 302-325.

121

[29] V. Eijkhout, LAPACK working note 50: distributed sparse data structures for linear
algebra operations, Tech. Rep. CS 92-169, Computer Science Department, University
of Tennessee, Knoxville, TN, 1992.

[30] S. C. Eisenstat, Efficient implementation of a class of preconditioned conjugate gra-
dient methods, SIAM J. Sci. Stat. Comput., 2(1981), pp. 1-4.

[31] S. C. Eisenstat, H. C. Elman, and M. H. Schultz, Variational iterative methods for
nonsymmetric systems of linear equations, SIAM J. Numer. Anal., 20(1983), pp.
345-357.

[32] J. Erhel, K. Burrage, and B. Pohl, Restarted GMRES preconditioned by deflation,
J. Comput. Appl. Math., 69(1996), pp. 303-318.

[33] V. Faber and T. A. Manteuffel, Necessary and sufficient conditions for the existence
of a conjugate method, SIAM J. Numer. Anal., 21(1984), pp. 352-362.

[34] V. Faber and T. A. Manteuffel, Orthogonal error methods, SIAM J, Numer. Anal.,
24(1987), pp. 170-187.

[35] R. Fletcher, Conjugate gradient methods for indefinite systems, Lecture Notes in
Mathematics 506, 1976, pp. 73-89.

[36] G. Forsythe and E. Strauss, On best conditioned matrices, Proc. Amer. Math. Soc.,
6(1955), pp. 340-345.

[37] S. Frankel, Convergence rates of iterative treatments of partial differential equations,
MTAC, 4(1950), pp. 65-75.

[38] R. W. Freund, Conjugate gradient-type methods for linear systems with complex
symmetric coefficient matrices, SIAM J. Sci. Stat. Comput., 13(1992), pp. 425-448.

[39] R. W. Freund, A transpose-free quasi-minimal residual algorithm for non-Hermitian
linear systems, SIAM J. Sci. Comput., 14(1993), pp. 470-482.

[40] R. W. Freund, G. H. Golub, and N. M. Nachtigal, Iterative solution of linear systems,
Acta Numerica, 1(1992), pp. 57-100.

[41] R. W. Freund and N. M. Nachtigal, QMR: a quasi-minimal residual method for non-
Hermitian linear systems, Numer. Math., 60(1991), pp. 315-339.

[42] A. George, Computer implementation of the finite element method, Tech. Rep. 208,
Department of 20 Computer Science, Stanford University, Stanford, CA, 1971.

[43] A. George, Nested dissection of a regular finite element mesh, SIAM J. Numer. Anal.,
10(1973), pp. 345–363.

[44] J. A. George and J. W. Liu, The evolution of the minimum degree algorithm, SIAM
Rev., 31(1989), pp. 1-19.

[45] L. Giraud, J. Langou, M. Rozložńık, and J. van der Eshof, Rounding error analysis
of the classical Gram-Schmidt orthogonalization process, Numer. Math., 101(2005),
pp. 87-100.

122

[46] G. Golub and W. Kahan, Calculating the singular values and pseudo-inverse of a
matrix, SIAM J. Numer. Anal., 2(1965), pp. 205-224.

[47] G. Golub and H. A. van der Vorst, Closer to the solution: iterative linear solvers,
the State of Art in Numerical Analysis (edited by I. S. Duff and G. A. Watson),
Clarendon Press, 1997, pp. 63-92.

[48] G. Golub and C. F. Van Loan, Matrix computations, 3rd ed., The Johns Hopkins
University Press, Baltimore, 1996.

[49] A. Greenbaum, Iterative methods for solving linear systems, SIAM, Philaledelphia
1997.

[50] M. Grote and T. Huckle, Parallel preconditioning with sparse approximate inverses,
SIAM J. Sci. Comput., 18(1997), pp. 838-853.

[51] M. H. Gutknecht, Variants of BiCGSTAB for matrices with complex spectrum, SIAM
J. Sci. Comput., 14(1993), pp. 1020-1033.

[52] M. H. Gutknecht, Lanczos-type solvers for nonsymmetric linear systems of equations,
Acta Numerica, 6(1997), pp. 271-397.

[53] M. R. Hestenes and E. Stiefel, Methods of conjugate gradients for solving linear
systems, J. Res. Nat. Bur. Standards, 49(1952), pp. 409-436.

[54] C. P. Jackson and P. C. Robinson, A numerical study of various algorithms related
to the preconditioned conjugate gradient method, Int. J. Num. Meth. Eng., 21(1985),
pp. 1315-1338.

[55] C. Lanczos, An iteration method for the solution of the eigenvalue problem of linear
differential and integral operators, J. Res. Nat. Bur. Standards, 45(1950), pp. 255-282.

[56] C. Lanczos, Solution of systems of linear equations by minimized iterations, J. Res.
Nat. Bur. Standards, 49(1952), pp. 33-53.

[57] C. Lanczos, Applied analysis, Prentice-Hall, Englewood Cliffs, NJ, 1956.

[58] J. W. Liu, Modification of the minimum-degree algorithm by multiple elimination,
ACM Trans. Math. Software, 11:2(1985), pp. 141-153.

[59] J. A. Meijerink and H. A. van der Vorst, An iterative solution method for linear sys-
tems of which the coefficient matrix is a symmetric M-matrix, Math. Comp., 31(1977),
pp. 148-162.

[60] R. B. Morgan, GMRES with deflated restarting, SIAM J. Sci. Comput., 24(2002),
pp. 20-37.

[61] N. M. Nachtigal, S. C. Reddy, and L. N. Trefethen, How fast are nonsymmetric matrix
iterations?, SIAM J. Matrix Anal. Appl., 13(1992), pp. 778-795.

[62] C. Paige and M. Saunders, Solution of sparse indefinite systems of linear equations,
SIAM J. Numer. Anal., 12(1975), pp. 617-629.

123

[63] C. Paige and M. Saunders, LSQR: an algorithm for sparse linear equations and sparse
least squares, ACM Trans. Math. Software, 8(1982), pp. 43-71.

[64] B. N. Parlett, D. R. Taylor, and Z. A. Liu, A look-ahead Lanczos algorithm for
unsymmetric matrices, Math. Comput., 44(1985), pp. 105-124.

[65] C. Pommerell, Solution of large unsymmetric systems of linear equations, vol. 17 of
series in micro-electronics, volume 17, Hartung-Gorre Verlag, Konstantz, 1992.

[66] Y. Saad, Krylov subspace methods for solving large unsymmetric linear systems,
Math. Comp., 37(1981), pp. 105-126.

[67] Y. Saad, SPARSKIT: a basic tool kit for sparse matrix computation, Tech. Rep.
CSRD TR 1029, CSRD, University of Illinois, Urbana, IL, 1990.

[68] Y. Saad, A flexible inner-outer preconditioned GMRES algorithm, SIAM J. Sci. Com-
put., 14(1993), pp. 461-469.

[69] Y. Saad, ILUT: a dual threshold incomplete LU factorization, Num. Lin. Alg. Appl.,
4(1994), pp. 387-402.

[70] Y. Saad, Iterative methods for sparse linear systems, 2nd ed., SIAM, Philadelphia,
PA, 2003.

[71] Y. Saad and M. H. Schultz, GMRES: a generalized minimal residual algorithm for
solving nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 7(1986), pp. 856-
869.

[72] Y. Saad and H. A. van der Vorst, Iterative solution of linear systems in the 20th
century, J. Comput. Appl. Math., 123(2000), pp. 1-33.

[73] Y. Saad and K. Wu, DQGMRES: a direct quasi-minimal residual algorithm based on
incomplete orthogonalization, Num. Lin. Alg. Appl., 3(1996), pp. 329-343.

[74] T. Sogabe, C.-H. Jin, K. Abe, and S.-L. Zhang, On an improvement of the CGS
method, Trans. JSIAM, 14:1(2004), pp. 1-12. (in Japanese)

[75] T. Sogabe, M. Sugihara, and S.-L. Zhang, An extension of the conjugate residual
method for solving nonsymmetric linear systems, Trans. JSIAM, 15:3(2005), pp. 445-
459. (in Japanese)

[76] T. Sogabe, M. Sugihara, and S.-L. Zhang, An extension of the conjugate residual
method to nonsymmetric linear systems, manuscript, 2005.

[77] T. Sogabe and S.-L. Zhang, On product-type methods based on the Bi-CR method,
RIMS Kokyuroku 1362, 4(2004), pp. 22-30. (in Japanese)

[78] T. Sogabe and S.-L. Zhang, A COCR method for solving complex symmetric linear
systems, J. Comput. Appl. Math., to appear.

[79] G. L. G. Sleijpen and D. R. Fokkema, BICGSTAB(�) for linear equations involving
unsymmetric matrices with complex spectrum, Elec. Trans. Numer. Anal., 1(1993),
pp. 11-32.

124

[80] G. L. G. Sleijpen and H. A. van der Vorst, An overview of approaches for the stable
computation of hybrid BiCG method, Appl. Numer. Math., 19(1995), pp. 235-254.

[81] P. Sonneveld, CGS: a fast Lanczos-type solver for nonsymmetric linear systems, SIAM
J. Sci. Stat. Comput., 10(1989), pp. 36-52.

[82] E. Stiefel, Relaxationsmethoden bester Strategie zur Lösung linearer Gleichungssys-
tems, Comment. Math. Helv., 29(1955), pp. 157-179.

[83] D. R. Taylor, Analysis of the look ahead Lanczos algorithm, Ph.D. Dissertation,
University of California, Berkley, 1982.

[84] C. H. Tong, A family of quasi-minimal residual methods for nonsymmetric linear
systems, SIAM J. Sci. Comput., 15(1994), pp. 89-105.

[85] A. van der Sluis, Condition numbers and equilibration of matrices, Numer. Math.,
14(1969), pp. 14-23.

[86] H. A. van der Vorst, Bi-CGSTAB: a fast and smoothly converging variant of Bi-
CG for the solution of nonsymmetric linear systems, SIAM J. Sci. Stat. Comput.,
13(1992), pp. 631-644.

[87] H. A. van der Vorst, Iterative Krylov methods for large linear systems, Cambridge
University Press, Cambridge, 2003.

[88] H. A. van der Vorst and J. B. M. Melissen, A Petrov-Galerkin type method for solving
Ax = b, where A is symmetric complex, IEEE Trans. Mag., 26(1990), pp. 706-708.

[89] H. A. van der Vorst and C. Vuik, GMRESR: A family of nested GMRES methods,
Num. Lin. Alg. Appl., 1(1994), pp. 369-386.

[90] R. S. Varga, Matrix iterative analysis, 2nd ed., Springer-Verlag, New York, 2000.

[91] P. K. W. Vinsome, ORTHOMIN: an iterative method for solving sparse sets of si-
multaneous linear equations, In Proc. Fourth Symposium on Reservoir Simulation,
Society of Petroleum of Engineering of AIME, (1976), pp. 149-159.

[92] H. F. Walker, Implementation of the GMRES method using Householder transfor-
mation, SIAM J. Sci. Stat. Comput., 9(1988), pp. 152-163.

[93] R. Weiss, Properties of generalized conjugate gradient methods, Num. Lin. Alg. Appl.,
1(1994), pp. 45-63.

[94] R. Weiss, Error-minimizing Krylov subspace methods, SIAM J. Sci. Comput.,
15(1994), pp. 511-527.

[95] P. Wesseling and P. Sonneveld, Numerical experiments with a multiple grid and a pre-
conditioned Lanczos type method, in: R. Rauntmann(ed.), Approximation methods
for Navier-Stokes problems, Lecture Notes in Math., 1980, pp. 543-562.

[96] D. M. Young, Iterative methods for solving partial differential equations of ellipic
type, Ph.D. thesis, Harvard University, Cambridge (MA, USA), 1950.

[97] S.-L. Zhang, GPBi-CG: generalized product-type methods based on Bi-CG for solving
nonsymmetric linear systems, SIAM J. Sci. Comput., 18(1997), pp. 537-551.

125

