˜_•¶ƒŠƒXƒg

(ƒe[ƒ}•Ê‚̘_•¶ƒŠƒXƒg )


ŠwpŽGŽ
Ÿ X.-M. Gu, T.-Z. Huang, L. Li, H.-B. Li, T Sogabe, and M. Clemens,
gQuasi-minimal residual variants of the COCG and COCR methods for complex symmetric linear systems in electromagnetic simulationsh
IEEE Trans. Microw. Theory Techn. (accepted )
Ÿ L. Du, T. Sogabe, and S.-L. Zhang,
gIDR(s) for solving shifted nonsymmetric linear systemsh,
J. Comput. Appl. Math., 274 (2015), pp. 35-43.
Ÿ T. Sogabe and F. Yilmaz,
gA note on a fast breakdown-free algorithm for computing the determinants and the permanents of k-tridiagonal matricesh
Appl. Math. Comput., 249 (2014) pp. 98-102.
Ÿ F. Yilmaz and T. Sogabe,
gA note on symmetric k-tridiagonal matrix family and the Fibonacci numbersh,
Int. J. Pure and Appl. Math., 96 (2014), pp. 289-298.
Ÿ X.-M. Gu, T.-Z. Huang, J. Meng, T. Sogabe, H.-B. Li, and L. Li,
gBiCR-type methods for families of shifted linear systemsh,
Comput. Math. Appl., 68 (2014), pp. 746-758.
Ÿ L. Du, T. Sogabe, and S.-L. Zhang,
gAn algorithm for solving nonsymmetric penta-diagonal Toeplitz linear systems,
Appl. Math. Comput., 244 (2014) pp. 10-15.
Ÿ D. J. Lee, T. Miyata, T. Sogabe, T. Hoshi, and S.-L. Zhang,
gAn interior eigenvalue problem from electronic structure calculationsh,
Japan J. Ind. Appl. Math., 30 (2013), pp. 625-633
Ÿ J. Jia and T. Sogabe,
gOn particular solution of ordinary differential equations with constant coefficientsh,
Appl. Math. Comput., 219 (2013), pp. 6761-6767.
Ÿ J. Jia and T. Sogabe,
gA novel algorithm for solving quasi penta-diagonal linear systemshC
J. Math. Chem., 51 (2013), pp. 881-889.
Ÿ A. Imakura, T. Sogabe, and S.-L. Zhang,
gAn efficient variant of the restarted shifted GMRES for solving shifted linear systemsh,
J. Math. Res. Appl., 33 (2013), pp. 127-141.
Ÿ J. Jia, T. Sogabe, and M.E.A. El-Mikkawy,
gInversion of k-tridiagonal matrices with Toeplitz structureh,
Comput. Math. Appl., 65 (2013), pp. 116-125
Ÿ J. Jia and T. Sogabe,
gA novel algorithm and its parallelization for solving nearly penta-diagonal linear systemsh,
Int. J. Comput. Math., 90 (2013), pp. 435-444.
Ÿ T. Sogabe, T. Hoshi, S.-L. Zhang, and T. Fujiwara,@@@@@@@ @@@@
gSolution of generalized shifted linear systems with complex symmetric matricesh,
J. Comput. Phys., 231(2012), pp. 5669-5684.
Ÿ J. Jia, Q. Kong, and T. Sogabe,
gA fast numerical algorithm for solving nearly penta-diagonal linear systemsh,
Int. J. Comput. Math., 89 (2012), pp. 851-860.
Ÿ T. Hoshi, S. Yamamoto, T. Fujiwara, T. Sogabe, and S.-L. Zhang,
gAn order-N electronic structure theory with generalized eigen-value equations and its application to a ten-million-atom systemh,
J. Phys.: Condens. Matter, 24 (2012) 165502, pp. 1-5.
Ÿ J. Jia, Q. Kong, and T. Sogabe,
gA new algorithm for solving nearly penta-diagonal Toeplitz linear systemsh,
Comput. Math. Appl., 63 (2012), pp. 1238-1243.
Ÿ A. Imakura, T. Sogabe, and S.-L. ZhangC
gAn efficient variant of the GMRES(m) method based on error equationsh
East Asia J. on Appl. Math., 2 (2012), pp.19-32.
Ÿ T. Sogabe and M.E.A. El-Mikkawy,
gFast block diagonalization of k-tridiagonal matricesh,
Appl. Math. Comput., 218 (2011), pp. 2740-2743.
Ÿ L. Du, T. Sogabe, and S.-L. Zhang,
gA variant of the IDR(s) method with quasi-minimal residual strategyh,
J. Comput. Appl. Math. 236 (2011), pp. 621-630.
Ÿ L. Du, T. Sogabe, B. Yu, Y. Yamamoto, and S.-L. Zhang,
gA block IDR(s) method for nonsymmetric linear systems with multiple right-hand sidesh,
J. Comput. Appl. Math., 235 (2011), pp. 4095-4106.
Ÿ H. Teng, T. Fujiwara, T. Hoshi, T. Sogabe, S.-L. Zhang, and S. Yamamoto,
gEfficient and accurate linear algebraic methods for large-scale electronic structure calculations with non-orthogonal atomic orbitalsh,
Phys. Rev. B 83, 165103 (2011), pp. 1-12.
Ÿ T. Sogabe and S.-L. Zhang,@@@@@@@ @@@@@@
gAn extension of the COCR method to solving shifted linear systems with complex symmetric matricesh,
East Asia J. on Appl. Math., 1 (2011), pp. 97-107.
Ÿ Y. Mizuno, K. Ohi, T. Sogabe, Y. Yamamoto, and Y. Kaneda,@@@@@@@
gFour-point correlation function of a passive scalar field in rapidly fluctuating turbulence: Numerical analysis of an exact closure equation h,
Phys. Rev. E 82, 036316 (2010), pp.1-9.
Ÿ M.E.A. El-Mikkawy and T. Sogabe,
gA new family of k-Fibonacci numbersh,
Appl. Math. Comput. 215 (2010), pp. 4456-4461.
Ÿ M.E.A. El-Mikkawy and T. Sogabe,
gNotes on particular symmetric polynomials with applicationsh,
Appl. Math. Comput., 215 (2010), pp. 3311-3317.
Ÿ T. Fujiwara, T. Hoshi, S. Yamamoto, T. Sogabe, and S.-L. Zhang, @@@@ @
gA novel algorithm of large-scale simultaneous linear equationsh,
J. Phys.: Condens. Matter, 22 (2010), 074206, pp. 1-6.
Ÿ Y.-F. Jing, T.-Z. Huang, Y. Zhang, L. Li, G.-H. Cheng, Z.-G. Ren, Y. Duan, T. Sogabe, and B. Carpentieri, @@@@@@@
gLanczos-type variants of the COCR method for complex nonsymmetric linear systemsh,
J. Comput. Phys., 228 (2009), pp. 6376-6394.
Ÿ T. Sogabe and M.E.A. El-MikkawyC @@@@@@@ @@@@
gOn a problem related to the Vandermonde determinanth,
Discrete Appl. Math., 157 (2009), pp. 2997-2999.
Ÿ A. Imakura, T. Sogabe, and S.-L. ZhangC @@@@@@@ @
gAn implicit wavelet sparse approximate inverse preconditioner using block finger patternh,
Numer. Linear Algebra. Appl., 16 (2009), pp.915-928.
Ÿ T. Sogabe, M. Sugihara, and S.-L. Zhang, @@@@@@@@@@@@@@@@
gAn extension of the conjugate residual method to nonsymmetric linear systemsh,
J. Comput. Appl. Math., 226 (2009), pp. 103-113.
Ÿ T. Sogabe, T. Hoshi, S.-L. Zhang, and T. Fujiwara, @@@@@@
gOn a weighted quasi-residual minimization strategy for solving complex symmetric shifted linear systemsh,
Electron. Trans. Numer. Anal., 31 (2008), pp. 126-140.
Ÿ S. Yamamoto, T. Sogabe, T. Hoshi, S.-L. Zhang, and T. Fujiwara, @
gShifted COCG method and its application to double orbital extended Hubbard modelh,
J. Phys. Soc. Jpn., Vol. 77, No. 11, 114713 (2008), pp. 1-8. @@@@@
Ÿ T. Sogabe, @@@@@@@@@@@@@@@@
gNew algorithms for solving periodic tridiagonal and periodic pentadiagonal linear systemsh,
Appl. Math. Comput., 202 (2008), pp. 850-856.
Ÿ T. Sogabe,@@@@@@@ @@@@@@
gA note on gA fast numerical algorithm for the determinant of a pentadiagonal matrixhh,
Appl. Math. Comput., 201 (2008), pp. 561-564.
Ÿ T. Sogabe,@@@@@@@ @@@@@@
gNumerical algorithms for solving comrade linear systems based on tridiagonal solversh,
Appl. Math. Comput., 198 (2008), pp. 117-122.
Ÿ T. Sogabe,@@@@@@@ @@@@@@
gA fast numerical algorithm for the determinant of a pentadiagonal matrixh,
Appl. Math. Comput., 196 (2008), pp. 835-841.
Ÿ T. Sogabe,@@
gOn a two-term recurrence for the determinant of a general matrixh,
Appl. Math. Comput., 187 (2007), pp. 785-788.
Ÿ T. Sogabe and S.-L. Zhang,
gA COCR method for solving complex symmetric linear systemsh,
J. Comput. Appl. Math., 199 (2007), pp. 297-303.
Ÿ R. Takayama, T. Hoshi, T. Sogabe, S.-L. Zhang, and T. Fujiwara,@@
gLinear algebraic calculation of Green's function for large-scale electronic structure theoryh,
Phys. Rev. B 73, 165108 (2006), pp. 1-9.


ŠwpŽGŽi˜a•¶j
Ÿ ¡‘q‹ÅC—kÏ‰hC‘]‰ä•”’mLC’£Ð—ǁC
gƒfƒtƒŒ[ƒVƒ‡ƒ“Œ^‚ÆLook-Back Œ^‚̃ŠƒXƒ^[ƒg ‚𕹗p‚µ‚½GMRES(m) –@‚ÌŽû‘©“Á«úW,
“ú–{‰ž—p”—Šw‰ï˜_•¶ŽCVolD22CNoD3C2012CppD117-141D
Ÿ ¡‘q‹ÅC‘]‰ä•”’mLC’£Ð—ǁC
g”ñ‘Ώ̐üŒ`•û’öŽ®‚Ì‚½‚ß‚ÌLook-Back GMRES(m) –@h
“ú–{‰ž—p”—Šw‰ï˜_•¶ŽCVolD22CNoD1C2012Cpp. 1-21D
Ÿ ŽR‰º’B–çC‹{“clŽjC‘]‰ä•”’mLC¯Œ’•vC“¡Œ´‹B•vC’£Ð—ǁC
gˆê”ʉ»ŒÅ—L’l–â‘è‚ɑ΂·‚éArnoldi(M,W,G)–@hC
“ú–{‰ž—p”—Šw‰ï˜_•¶ŽCVolD21CNoD3C2011Cpp. 241-254D
Ÿ ‹{“clŽjC‘]‰ä•”’mLC’£Ð—ǁC
gJacobi-Davidson –@‚É‚¨‚¯‚éC³•û’öŽ®‚̉ð–@ |ŽË‰e‹óŠÔ‚É‚¨‚¯‚é Krylov •”•ª‹óŠÔ‚̃Vƒtƒg•s•Ï«‚ÉŠî‚¢‚ā| hC
“ú–{‰ž—p”—Šw‰ï˜_•¶ŽCVolD20CNoD2C2010Cpp. 115-129D
Ÿ ‹{“clŽjC“máûC‘]‰ä•”’mLCŽR–{—LìC’£Ð—ǁC
g‘½d˜AŒ‹—̈æ‚̌ŗL’l–â‘è‚ɑ΂·‚é Sakurai-Sugiura –@‚ÌŠg’£hC
“ú–{‰ž—p”—Šw‰ï˜_•¶ŽCVolD19CNoD4C2009CppD537-550D
Ÿ ¡‘q‹ÅC‘]‰ä•”’mLC’£Ð—ǁC @ @@@@@@@ @
gGMRES(m)–@‚̃ŠƒXƒ^[ƒg‚ɂ‚¢‚āhC
“ú–{‰ž—p”—Šw‰ï˜_•¶ŽCVolD19CNoD4C2009CppD551-564D
Ÿ ‘O“cË•ºCˆ¢•”–M”üC‘]‰ä•”’mLC’£Ð—ǁC @@@@@@
gAOR–@‚ð—p‚¢‚½‰Â•Ï“I‘Oˆ—•t‚«ˆê”ʉ»‹¤–ðŽc·–@hC @@@@@@@@@@@@@
“ú–{‰ž—p”—Šw‰ï˜_•¶ŽCVolD18CNoD1C2008CppD155-170D
Ÿ ¡‘q‹ÅC‘]‰ä•”’mLC’£Ð—ǁC @@@@@@ @@@@@@
gFinger pattern‚̃uƒƒbƒN‰»‚É‚æ‚é‰A“Iwavelet‹ßŽ—‹ts—ñ‘Oˆ—‚̍‚‘¬‰»hC@@@
“ú–{‰ž—p”—Šw‰ï˜_•¶ŽCVolD17CNoD4C2007CppD523-542D
Ÿ “삳‚‚«C‘]‰ä•”’mLC™Œ´³èûC’£Ð—ǁC
gBi-CR–@‚ւ̏€Å¬Žc·ƒAƒvƒ[ƒ`‚Ì“K—p‚ɂ‚¢‚āhC
“ú–{‰ž—p”—Šw‰ï˜_•¶ŽCVolD17CNoD3C2007CppD301-317D
Ÿ ˆ¢•”–M”üC‘]‰ä•”’mLC“¡–쐴ŽŸC’£Ð—ǁC@@
g”ñ‘Ώ̍s—ñ—p‹¤–ðŽc·–@‚ÉŠî‚­ÏŒ^”½•œ‰ð–@hC
î•ñˆ—Šw‰ï˜_•¶ŽuƒRƒ“ƒsƒ…[ƒeƒBƒ“ƒOƒVƒXƒeƒ€vCVolD48CNoDSIG 8 (ACS18)C2007CppD11-21D
Ÿ ‘]‰ä•”’mLC™Œ´³èûC’£Ð—ǁC
g‹¤–ðŽc·–@‚Ì”ñ‘Ώ̍s—ñ—p‚Ö‚ÌŠg’£hC
“ú–{‰ž—p”—Šw‰ï˜_•¶ŽCVolD15CNoD3C2005CppD445-459D
Ÿ ‘]‰ä•”’mLC“A”gC‹´–{NC’£Ð—ǁC
g”ñ‘ΏÌToeplitzs—ñ‚Ì‚½‚ß‚Ì’uŠ·s—ñ‚É‚æ‚é‘Oˆ—hC
“ú–{‰ž—p”—Šw‰ï˜_•¶ŽCVolD15CNoD2C2005CppD159-168D
Ÿ ‘]‰ä•”’mLC‹à¬ŠCCˆ¢•”–M”üC’£Ð—ǁC
gCGS–@‚̉ü—ǂɂ‚¢‚āhC
“ú–{‰ž—p”—Šw‰ï˜_•¶ŽCVolD14CNoD1C2004CppD1-12D


ƒŒƒ^[˜_•¶@
Ÿ L. Du, T. Sogabe and S.-L. Zhang
gQuasi-minimal residual smoothing technique for the IDR(s) methodh,
JSIAM Letters, 3 (2011), pp. 13-16.



Proceedings (Refereed)
Ÿ A. Imakura, T. Sogabe, and S.-L. Zhang,
gA Modification of Implicit Wavelet Sparse Approximate Inverse Preconditioner Based on a Block Finger Patternh,
in: Frontiers of Computational Science 2008, eds. Y. Kaneda, M. Sasai, and K. Tachibana, Nagoya University, 2008, pp. 271-278.
Ÿ T. Sogabe and S.-L. Zhang, (Invited Paper)
gNumerical algorithms for solving shifted complex symmetric linear systemh,
in: Proceedings of the National Institute for Mathematical Sciences, Vol. 3, No. 9, (2008), pp. 145-158.
Ÿ T. Sogabe, T. Hoshi, S.-L. Zhang, and T. Fujiwara
On an application of the QMR_SYM method to complex symmetric shifted linear systems
PAMM: Proc. Appl. Math. Mech. 7, (2007), pp. 2020081-2020082.
Ÿ T. Sogabe, T. Hoshi, S.-L. Zhang, and T. Fujiwara, (Invited Paper)
gA numerical method for calculating the Green's function arising from electronic structure theoryh,
in: Frontiers of Computational Science, eds. Y. Kaneda, H. Kawamura and M. Sasai,
Springer-Verlag, Berlin/Heidelberg, 2007, pp. 189-195.
Ÿ T. Sogabe and S.-L. Zhang, (Invited Paper)
gAn iterative method based on an A-biorthogonalization process for nonsymmetric linear systemsh,
in: Proceedings of The 7th China-Japan Seminar on Numerical Mathematics, eds. Z.-C. Shi and H. Okamoto,
Science Press, Beijing, 2006, pp. 120-130.
Ÿ T. Sogabe and S.-L. Zhang, (Invited Lecture)
gExtended conjugate residual methods for solving nonsymmetric linear systemsh,
in: Numerical Linear Algebra and Optimization, ed. Y. Yuan, Science Press, Beijing/NewYork, 2004, pp. 88-99.



u‹†˜^
Ÿ ¡‘q‹ÅC ‘]‰ä•”’mLC’£Ð—ǁC
uƒVƒtƒgÌüŒ`•û’öŽ®‚ɑ΂·‚郊ƒXƒ^[ƒg•t‚«Shifted Krylov•”•ª‹óŠÔ–@‚ɂ‚¢‚āvC
‹ž“s‘åŠw”—‰ðÍŒ¤‹†Šu‹†˜^1791Cu‰ÈŠw‹ZpŒvŽZ‚É‚¨‚¯‚闝˜_‚Ɖž—p‚̐V“WŠJvC2012.4C ppD47-56D
Ÿ T. Miyata, T. Sogabe, and S.-L. Zhang,
gOn the convergence of the Jacobi-Davidson method based on a shift invariance propertyhC
RIMS Kokyuroku 1733, Mathematical foundation and development of algorithms for scientific computingC2011.3, pp. 78-84.
Ÿ T. Sogabe, T. Hoshi, S.-L. ZhangCand T. Fujiwara,
gA fast numerical method for generalized shifted linear systems with complex symmetric matriceshC
RIMS Kokyuroku 1719, Recent Developments of Numerical Analysis and Numerical Computation ALgorithmsC2010.11, pp. 106-117.
Ÿ T. Sogabe and S.-L. ZhangC @@@
gOn the use of the QMR SYM method for solving complex symmetric shifted linear systemshC
RIMS Kokyuroku 1614, High Performance Algorithms for Computational Science and Their ApplicationsC2008.10, pp. 124-135.
Ÿ T. Sogabe and S.-L. Zhang
gCRS: a fast algorithm based on Bi-CR for solving nonsymmeric linear systemsh,
The First China-Japan-Korea Joint Conference on Numerical Mathematics & The Second East Asia SIAM Symposium,
Hokkaido University Technical Report Series in Mathematics (–kŠC“¹‘åŠw”Šwu‹†˜^), 112(2006), pp. 15-18.
Ÿ –Ø‘º‹ÓŽiC•½–ìÆ”äŒÃC‰¬“c•ŽjCŽRàVGŽ÷C‘]‰ä•”’mLC‰¡ŽR˜aOC
uReal Root Counting‚ÉŠÖ‚·‚é˜b‘èvC
‹ž“s‘åŠw”—‰ðÍŒ¤‹†Šu‹†˜^1456CuCA-ALIASvC2005.11CppD180-187D
Ÿ ’·’JìG•FC‘]‰ä•”’mLC‰¬“c •ŽjC
u”ñ‘Ώ̍s—ñ‚©‚琶¬‚³‚ꂽ‘Ώ̍s—ñ‚ɑ΂·‚éCG –@vC
‹ž“s‘åŠw”—‰ðÍŒ¤‹†Šu‹†˜^1362Cu”’l‰ðÍ‚ƐV‚µ‚¢î•ñ‹ZpvC 2004.4C ppD6-12D
Ÿ ‘]‰ä•”’mLC’£Ð—ǁC
uBi-CR–@‚̐ό^‰ð–@‚ɂ‚¢‚āvC
‹ž“s‘åŠw”—‰ðÍŒ¤‹†Šu‹†˜^1362Cu”’l‰ðÍ‚ƐV‚µ‚¢î•ñ‹ZpvC2004.4CppD22-30D
Ÿ ‘]‰ä•”’mLC“¡–쐴ŽŸC’£Ð—ǁC
uCOCG–@‚̐ό^‰ð–@‚ɂ‚¢‚āvC
‹ž“s‘åŠw”—‰ðÍŒ¤‹†Šu‹†˜^1320Cu”÷•ª•û’öŽ®‚̐”’l‰ð–@‚ƐüŒ`ŒvŽZvC2003.5CppD201-211D
@

‰ðà˜_•¶
Ÿ ‘]‰ä•”’mLC ’£Ð—ǁC @@@
‘å‹K–̓VƒtƒgüŒ`•û’öŽ®‚̐”’l‰ð–@|ƒNƒŠƒƒt•”•ª‹óŠÔ‚̐«Ž¿‚É’…–Ú‚µ‚ā|C
‰ž—p”—CVolD19CNoD3C2009CppD27-42D @


’˜‘
Ÿ ‘]‰ä•”’mLC
@ŽF–€‡‹gC‘åÎiˆêC™Œ´³èû •ÒCw‰ž—p”—ƒnƒ“ƒhƒuƒbƒNxC’©‘q‘“XC2013D
@u˜A—§1ŽŸ•û’öŽ®‚ɑ΂·‚é’¼Ú‰ð–@v‚̍€–ځCppD408-411D
@u˜A—§1ŽŸ•û’öŽ®‚ɑ΂·‚锽•œ‰ð–@v‚̍€–ځCppD412-415D