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Abstract. Software understanding tools involve program modularization and vi-

sualization capabilities. However provided program modules do not always rep-

resent the accurate structure. Formal Concept Analysis and concept partition are

methods to identify desirable program modules. Using concept partition, we de-

fine vertical and horizontal relation among partitions and cluster different abstract

concept partitions to provide optimal program modules for software understand-

ing. The optimality and applicability of our modularization method are illustrated

with experimental results using C programs.

1 Introduction

One of the important themes of software engineering is to provide software understand-

ing techniques that support the improving process of currently developing or legacy

software; refactoring, testing and maintenance. Software understanding techniques pro-

vide effective representation of software, using various kinds of views. The views are

implemented with program visualization, illustrating the overall software structure. To

design and to utilize the views, optimal program modularization and efficient navigation

method with which the user explores program modules, are necessary [1].

As a sophisticated program partitioning technique, Formal Concept Analysis [2] and

concept partition [3] are presented. Concept analysis finds a potential group of modules

that share common properties. [3] present a method to identify modules of C programs.

However, concept partition gives rise to many alternative partitions at a time therefore

optimal partitions are to be chosen for software understanding. If the partitions are

ordered based on the abstraction level or clustered into groups, a complicated concept

partition can be simplified and classified.

This paper presents techniques to choose an optimal set of modules and to relate

each module to the others. We define a partition hierarchy lattice and path (See Sec-

tion 3.1), and present a clustering method of different abstract concept partitions (See

Section 3.2). A partition hierarchy lattice represents vertical and horizontal relations

among program modules. A path is used for navigation in the modules. The clustering

method relates different abstract concept partitions. By combining the concept parti-

tions, a schematic view of a C program is depicted with different abstract modules.

To automate the program modularization process, we have implemented a prototype

concept partition processor (See Section 4) that partitions a C program into optimal
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module groups. The tool builds a formal context, concept lattice, concept partition and

partition hierarchy lattice. The tool supports visualization of program modularization,

using function call graphs.

As an example, a program modularization of gzip-1.2.4 is presented (See Section

4). Through the experimental results we discuss the optimality and efficiency of the pro-

gram modularization (See Section 5). Concept partition ensures the accurate partition-

ing of programs and provides the navigation capability that leads the user to desirable

modules using resources of Formal Concept Analysis as a guide index.

2 Related Works

Software understanding becomes the center of attention in software engineering re-

searches, because recent software systems have been developed by reusing and im-

proving existing software. In this paper, we concentrate on the program partitioning

techniques to provide optimal modules applicable to software understanding.

Siff and Reps [3] provide module identifying techniques via Formal Concept Analy-

sis. They present a concept partition algorithm and decompose a program into modules.

These techniques are useful for automatic program modularization and our research

uses an algorithm explained in the research [3]. However, the algorithm sometimes

yields many partition alternatives, therefore we present techniques to select optimal

partitions from them.

Approaches of [3], [4] and [5] use Formal Concept Analysis for program refactor-

ing and [6] applies the technique to program slicing. Our approach aims at utilizing

the partitions for program understanding with program visualization. For example, we

provide a schematic view of a program, using modules obtained from concept partitions

(See Fig. 4).

Many works on software understanding present sophisticated representation of var-

ious kinds of programs [7] [8]. Almost software understanding tools decompose a pro-

gram into modules using software metrics and graph layout algorithm [9]. In some

case, the modules do not represent accurate structures. Compared to the tools, we try to

provide program modules representing accurate structures of C programs.

3 Basic Methods

This section describes basic program modularization techniques with Formal Concept

Analysis and concept partition. Based on the concept partition, we present partition

hierarchy (Section 3.1) and clustering of concept partitions (Section 3.2) to identify

optimal program modules. We obtain below concept partitions with the bottom up par-

tition algorithm explained by Siff and Reps [3].

3.1 Partition Hierarchy

Many partitions are derived from a formal context if the number of attributes are large,

therefore the partitions are to be ordered and classified. The partitions can be hierar-

chically ordered with sub-partition relation, by which a lattice structure is constructed.

The lattice represents the abstraction level of each partition.
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Formal Context, Concept and Partition The basis of Formal Concept Analysis is a

context that is a triple C = (O,A,R). O is a finite set of objects and A is of attributes.

R is a binary relation between O andA.

A concept is a pair of a finite set of objects and of attributes (X, Y ) : X ⊆ O, Y ⊆
A . X and Y are bilaterally related with mappings σ and τ ; Y=σ(X), X=τ(Y ): σ(O) =
{a ∈ A|∀o ∈ O : (o, a) ∈ R} and τ(A) = {o ∈ O|∀a ∈ A : (o, a) ∈ R}. X is called

extent and Y is called intent. A concept partition p is a set of concepts whose extent

forms a partition of O: p = {c1, c2, · · · , cn}. An atomic partition consists of atomic

concepts and a trivial partition holds a concept that contains all objects of O .

Partition Hierarchy Lattice Partition hierarchy is represented by the sub-partition

relation in which partitions are hierarchically ordered according to the abstraction level.

Given two partitions pA and pB , and let ci ∈ pA and c′i1 , c′i2 ∈ pB hold a relation

ci = c′i1 ⊔ c′i2 , and two partitions share other concepts (∴ a difference set pA-{ci}
equals to pB-{c′i1 , c

′
i2
}), we define sub-partition relation as follows.

Definition 1 (Sub-partition Relation) Given two concept partitions pA and pB in a

concept partition P , partition hierarchy relation ≺ is defined as

pB ≺ pA

where: ci ∈ pA, c′i1 , c′i2 ∈ pB , ci = c′i1 ⊔ c′i2 , pA-{ci} ≡ pB-{c′i1 , c
′
i2
}

The relation≺ is defined with ci = c′i1 ⊔ c′i2 (other concepts are common), therefore

the relation ≺ forms a complete partial order. A lattice structure can be constructed

from a concept partition, using an atomic partition as top and trivial partition as bottom.

Definition 2 (Partition Hierarchy Lattice) A partition hierarchy lattice is a lattice in

which each node corresponds to a partition pi. An edge between two nodes is drawn

according to the sub-partition relation ≺.

Along with a partition hierarchy lattice, a path that starts from a trivial partition and

ends to an atomic partition, is defined. Abstraction level of the corresponding partitions

is represented by a path.

Definition 3 (Partition Path) A partition path is a sequence of partitions psi
such that

ps0(=atomic) ≺ ps1
≺ ps2

≺ · · · ≺ psn(=trivial)

Two consecutive partitions pA and pB in a path PS are differed using only concepts

ci ∈ pA and c′i1 , c′i2 ∈ pB . Each concept holds a set of attributes Yci
, Yc′

i1

or Yc′
i2

,

consequently there exists a pair of difference sets of attributes {Yc′
i1

- Yci
, Yc′

i2

- Yci
}

that we call partitioning attributes pair. The pair specifies the difference between two

consecutive partitions.

Definition 4 (Partitioning Attributes Pair) Given two consecutive partitions pA and

pB , partitioning attributes pair is defined as

{Yc′
i1

− Yci
, Yc′

i2

− Yci
}

where: ci ∈ pA, c′i1 , c′i2 ∈ pB , ci = c′i1 ⊔ c′i2 , Yci
⊂ Yc′

i1

, Yci
⊂ Yc′

i2
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3.2 Clustering of Concept Partitions

To implement a schematic view of a program with various viewpoints, we provide a

method to cluster multiple concept partitions derived from a program. Different abstract

concept partitions are built by re-choosing objects and attributes. For example, when

an attribute a is replaced by a set of attributes {a′
i}, a concept lattice is expanded. In

contrast, a complicated concept lattice can be reduced into a manageable size. We define

attribute decomposition as follows.

Definition 5 (Attribute Decomposition) Given two contexts CA = (O, A , R) and

CB= (O, A ′, R′), and given an attribute a ∈ A and {a′
i} ⊆ A ′, attribute decom-

position→ is defined as

a→ {a′
i}, where τ(a) ≡

⋃
τ(2{a′

i
})− τ(∅)

Similarly, attribute composition← is defined.

Then we define a relation between two concept partitions built by attribute decom-

position as re-partition relation.

Definition 6 (Re-partition relation) Given two contexts CA and CB , and suppose CB

is built from CA with attribute decomposition. Then a set of objects Xc of each atomic

concept c ∈ CA equals to a union of sets of objects {Xc′
i
} of {c′i} ⊆ CB: {c′i} are also

atomic concept.

∀c = (Xc, Yc) ∈ CA, ∃{c′i = (Xc′
i
, Yc′

i
)} ⊆ CB, s.t. Xc ≡

⋃
Xc′

i

For example an it attribute ”human” can be decomposed into {man, women}. Generic-

specific relation used in object oriented programming also generates attribute (de)composition.

4 Example of Program Modularization

This section describes experimental results of program modularization. Using gzip1.2.4,

formal contexts, concept partitions (Section 4.1) and more detail information on pro-

gram modularization such as partition lattice, path (Section 4.2) and combination of

different abstract concept partitions (Section 4.3) are presented.

To create a context, concept lattice and partition, a prototype analyzer and concept

partition processor is implemented on Sapid [10]. Sapid provides comprehensive infor-

mation on a target program written in ANSI-C and Java. The analyzer creates a context

from the source program according to a choice of objects and attributes.

4.1 Building a Formal Context and Partition

We analyze well-known open-source software, gzip-1.2.4 written in C, whose size is

approximately 231.9K LOC (Line Of Code). To build a context representing program

modularization, function is used as objects and aggregate type variables in C programs
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Table 1. Experimental results of gzip-1.2.4

context using attribute as object attribute concept/atomic partition ave/max module layer path

A struct type 76 3 6/4 PA 5 18.8/64 PLA
4 3

B struct type variables 76 11 53/11 PB 246 6.8/44 PLB
11 -

as attributes, following the research [3]. These variables relate each function to the

others.

We present two attribute choices of the aggregate type according to whether occur-

rences of different variables that belong to a struct type, are dealt with one attribute or

not. Each context (Table 1.) are automatically built by the prototype tool. For example,

context A holds 76 objects, 3 attributes and 6 concepts. Concept partition PA holds 5

partitions and PB holds 246 partitions.

4.2 Hierarchy of Partitions

From a concept partition PA and PB , a partition lattice PLA
and PLB

are derived.

One of the partition path of PLB
= {p190, p248, p260, p263, · · ·, p0 } is listed below.

partition concepts partitioning attribute pair

original p190 {c53}
bi-partition p248 {c21, c32} {} {d desc, l desc}
tri-partition p260 {c21, c42, c64} {istat} {dyn dtree}

tetrameric-partition p263 {c7, c326 , c42, c46} {} {d desc, l desc}

.

.

.
. . . p0 {c0, c1, · · ·, c10}

The path presents from bi-partition to eleventh-partition according to the partition-

ing attributes pair (Fig. 1-3). Bi-partition p248 = {c21, c32} and an original graph p190

are differed with partitioning attribute pair (∅, {d desc, l desc}). Each concept is fig-

ured with function call graph.
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4.3 Combination of Concept Partitions

Concept partitions PA and PB can be used complementary. For example, Partition

hierarchy lattice PLB
is too complicate to obtain a desirable path. In contrast, partition

lattice PLA
holds 4 layers and 3 paths (See Table 1.) therefore PLA

can be utilized to

depict a schematic view.

A re-partition relation of two partitions PA and PB is illustrated below. For

example, an extent of C2: {ct tally, send all trees, ct init, init block, set file type, scan tree,

send tree} in PA is re-partitioned into {c2 : (send all tree, init block), c4 : (scan tree, send tree),

c6 : set file type, c7 : ct tally, c8 : ct init} in PB . Other attributes of PA are also decom-

posed into some attributes of PB .

concept A attribute concept B

C2 ct data={ d desc, bl tree, l desc, dyn dtree, dyn ltree, bl desc }, not-tree desc c2, c4, c6, c7, c8

C3 ct data, tree desc ={static dtree, configuration table istat, static ltree, longopts} c1, c3

C5 = (C2, C3) ct data c1, c2, c3, c4, c6, c7, c8

Fig. 4 is a schematic view of gzip-1.2.4 with two different abstract concept partitions

PA and PB . There exist 18 segments in the nest structure and its depth is 4. Function

call relations are used to connect corresponding two segments.
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Fig. 4. A schematic view of program modularization: gzip-1.2.4

5 Discussion

This section discusses the program modularization technique presented in this paper.

Section 5.1 describes the optimality and efficiency of the modularization. Section 5.2

presents other case studies applying concept partition to a number of C programs. To

obtain schematic views of various programs, we use alternative choices of concept par-

tition based on a reverse engineering tool Sapid [10].
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5.1 Schematic View of Programs

Our research aims at providing a user interface for software understanding as an ”En-

trance” of CASE tools. To depict the user interface, a schematic view that links to more

detail information is necessary. First we asses the optimality of the size and the number

of modules, then we demonstrate that the modules are effectively related with attributes.

Optimal Modularization An optimal size of modules for depicting a schematic view

depends on the usage of modules. It is widely known that the optimal size is less than

20 and sufficient size less than 50.

Program modules are represented with atomic concepts therefore the number of

modules is counted by the number of atomic concepts. An experimental result using

gzip-1.2.4, which has 231.9 KLOC and 76 user-defined functions, shows that context

A holds 4 and B holds 11 atomic concepts. The max module size derived from a A is

64 and B is 44. Hence, the size and the number of modules of B are optimal.

Fig. 4 is depicted with the 11 atomic concepts of B using function call relation.

Moreover, Fig. 4 uses a nested relation among partitions in a partition lattice PLA
that

has 4 layers.

Interactive Navigation Formal Concept Analysis ensures that each concept partition

represents a specific program structure according to the choice of objects and attributes.

Gzip-1.2.4 example illustrates a program structure with aggregate types of C programs,

therefore each module (partition) is related based on the ”accurate” program structure,

and obtained schematic views are similar to UML.

The hierarchical relation among partitions in PB is presented in Fig. 1,2 and 3,

where each module diagram is obtained by an interactive choice of concerning at-

tributes (partitioning attributes pair). The prototype tool supports the interactive choice

of the partitions. Using the tool, the user can find desirable modules and access detail

information on programs, provided as hyper documents [11].

5.2 Other Case Studies

Table 2. presents concept partitions of various C programs, using struct type variables as

attribute (See B in Table 1.). However, some programs can not be optimally partitioned

as gzip-1.2.4. Gnugo and whetstone derive few concepts in comparison to its program

size. In contrast, bison and bash derive many concepts and partitions therefore it is

difficult to calculate concepts and partitions.

To provide a schematic view of the programs, alternative choices of attributes are

introduced. Gnugo uses global variable, and bash and bison use struct type (See A

in Table 1.) as attributes. Then, we obtain optimal concept partitions given in the right

part of Table 2. Alternative choices of concept partition require a reverse engineering

method. Our prototype tool supports a user defined design of formal context and con-

cept partition. The analyzer is developed on the software repository database of Sapid

[10], which is written in XML [11] [12]. Therefore alternative concept partitioning is

implemented with DOM programs.
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Table 2. Experimental results of well-known C programs

LOC object attribute concept partition alternative attribute object attribute concept partition

whetstone 37.6 6 1 4 2

gnugo-1.2 98.6 30 1 4 2 global variable 30 22 217 172

fileutils-ls-3.14 1870.2 115 15 52 778

bison-1.5 986.0 162 30 - - struct type 162 11 168 68572

bash 9550.0 1078 82 - - struct type 1078 8 117 23121

6 Summary and Future Work

We have motivated to provide easily understandable program representation with mod-

ules of manageable size. This paper presented a program modularization technique with

Formal Concept Analysis. We defined hierarchy of partitions with partition hierarchy

lattice. To provide schematic views of programs, a clustering technique of modules

were presented and obtained modules could be depicted in a diagram. We implemented

a prototype tool for program modularization and through the experimental results, the

optimality of modularization and efficiency of navigation method were demonstrated.

We plan to develop a practical software understanding tool based on our techniques.

Then the prototype concept processor is to be more sophisticated. For example, the

generating process of an alternative context and concept partition should be fully auto-

mated. The tool can be linked to hyper documents based on XML. The support for the

modularization of Java programs is also the next trial.
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