
An Effective Solution
to Large-scale Traveling Salesman Problems

Using Chaotic Neural Networks

T. Nagashima†, K. Kobayashi‡∗, and M. Obayashi‡

† Division of Computer Science and Systems Engineering
Graduate School of Science and Engineering, Yamaguchi University

‡ Department of Computer Science and Systems Engineering
Faculty of Engineering, Yamaguchi University

†‡ address: 2–16–1 Tokiwadai, Ube, Yamaguchi 755–8611, Japan
∗ phone:+81-836-85-9519 ∗ fax: +81-836-85-9518

∗ e-mail: k@nn.csse.yamaguchi-u.ac.jp

Abstract
This paper presents an effective TSP (Traveling

Salesman Problem) solver for large-scale problems us-
ing neural networks. Firstly, in the proposed method,
an intractable large-scale TSP is divided into some
tractable small-scale problems (clusters) using a clus-
tering technique. Secondly, a visiting order of clusters
is determined using chaotic neural networks (CNNs).
Thirdly, the small-scale problems are solved using
CNNs. Simultaneously, two pairs of connecting cities
between adjacent clusters are also determined using
CNNs. Through computer simulations, it is confirmed
that the proposed method is effective to solve the large-
scale problems.

1 Introduction
It is well known that TSP (traveling salesman prob-

lem) [1] is one of the combinatorial optimization prob-
lems and is categorized as NP-hard problem. The TSP
is a problem to find a closed tour which visits each city
once, returns to the starting city and has a shortest to-
tal path length. A lot of efforts have been devoted to
solve TSP because its solutions are widely applicable to
engineering and other field.

Hopfield and Tank proposed a recurrent neural net-
work (RNN), so-called Hopfield model, for solving
combinatorial optimization problems [2]. In their asyn-
chronous model, it is guaranteed that a network grad-
ually changes its state so as to decrease a cost func-
tion defined for the problem. They have applied it to
TSP and shown that an approximate solution is obtained
to some small-scale TSPs. As the number of cities in-
creases, however, the network tends to be trapped into
local minima because they are dramatically increased.
In general, such a problem could be escaped using an-
nealing techniques like Boltzmann machine [3]. But,

regarding computational cost, it becomes much heavier.
Nozawa introduced a negative self-feedback connec-

tion to a discrete-type Hopfield model [4]. Since this
allows each neuron to have chaotic states, a network
converges to a global minimum not trapping into local
minima. Furthermore, Chen and Aihara improved con-
vergence property in Nozawa model, where the value of
the self-feedback connection is gradually decreased [5].
This realizes a chaotic simulated annealing. However,
both models still have a problem on computational cost
for large-scale TSPs. Furthermore, it is difficult to ob-
tain a good approximate solution for TSPs with more
than few tens of cities.

In the present paper, we propose an effective al-
gorithm for solving large-scale TSPs using a cluster-
ing technique. The basic concept of our method is
that an intractable large-scale TSP is divided into some
tractable small-scale TSPs. Here, the small-scale TSP
refers to one which can be easily solved by RNNs.
Kobayashi presented a method introducing a clustering
technique for solving large-scale problems [6]. How-
ever, this method does not always give us good approxi-
mate solutions because it does not consider interactions
between adjacent clusters. In the present paper, we fo-
cus on such interactions to obtain good approximate so-
lutions for large-scale TSPs.

2 How to Solve Large-scale TSP Using
CNN

In this section, transiently chaotic neural network
(TCNN) proposed by Chen and Aihara [5], which is
one of TSP solvers using CNNs, is described (Section
2.1). Then, formulation for TSP is introduced (Section
2.2). After that, the divide-and-conquer approach [6]
for solving large-scale TSPs is presented (Section 2.3).
Finally, a new effective method for solving large-scale



TSPs is proposed (Section 2.4).
2.1 Transiently Chaotic Neural Network

The TCNN is a type of RNNs and proposed for solv-
ing combinatorial optimization problems. The overview
of TCNN is shown in figure1. In this figure, the con-
nections denoted by symbol◦ are excitatory and•’s are
inhibitory.

z1

x1 xN

y1 y i yN

W1i

x i

Wi1

z i

WN1

WNi

W1N WiN zN

y2

x2

W21

W2i

W2N

W12 Wi2 WN2z2

I1 I2 Ii IN

Figure 1:The structure of TCNN

The dynamics of TCNN withN neurons is charac-
terized by the following equations [5]:

xi(t) =
1

1 + exp(−yi(t)/ε)
, (1)

yi(t + 1) = kyi(t)

+α


N∑

j=1, j,i

Wi j x j(t) + I i


−zi(t){xi(t) − I0}, (2)

zi(t + 1) = (1− β)zi(t), (3)

where
xi output of neuroni (0 ≤ xi ≤ 1)
yi internal state of neuroni
ε slope parameter of sigmoid function

(ε > 0)
k decay parameter ofyi (0 ≤ k ≤ 1)
α positive scaling parameter for inputs
Wi j connection weight between neuroni

and j
I i external input to neuroni

zi self-feedback connection weight (zi > 0)
I0 positive constant
β decay parameter ofzi (0 ≤ β ≤ 1)

The TCNN is characterized as follows. At the initial
state,zi is so large that a network state is chaotic and the
network searches a global solution. Then,zi is gradu-
ally decreased with time. The network is also gradually
changed from chaotic state to steady state. An optimiza-
tion process of TCNN is regarded as a chaotic simulated
annealing (CSA) [5].

2.2 Formulation for TSP
In TCNN, the formulation for TSP is identical to

Hopfield model [2]. For N-city TSP, the neurons are
arranged as shown in figure2. In this figure, each row
specifies city and each column is visiting order. If neu-
ron (i, k) is activated, cityi is visited in thekth order.

1

1

i

j

N

x ik

visiting order

ci
ty

x11

x jl

xNNxN1

x1Nx1k x1l

xi1

xj1

Wikjl

Wjlik

Iik

x12

x22x21

2

2

k l N

zik

Figure 2:The arrangement of neurons for TSP

The energy function is defined as follows:

E =
1
2

(AE1 + BE2) , (4)

whereA and B are constants andE1 and E2 are con-
straint term and distance term in energy function, re-
spectively.E1 andE2 are defined as:

E1 =

N∑

i=1


N∑

k=1

xik − 1


2

+

N∑

k=1


N∑

i=1

xik − 1


2

, (5)

E2 =

N∑

i=1

N∑

k=1

N∑

j=1

di j xik

(
x jk−1 + x jk+1

)
. (6)

By comparing energy functionE of Eq.(4) and the
following general energy function,

Egeneral = − 1
2

N∑

i=1

N∑

k=1

N∑

j=1

N∑

l=1

Wik jl xikx jl

−
N∑

i=1

N∑

k=1

I ikxik, (7)

connection weightWik jl and external inputI ik are de-
rived as follows:

Wik jl = −A
{
δi j (1− δkl) + δkl(1− δik)

}



−Bdi j (δlk+1 + δlk−1), (8)

I ik = A, (9)

whereδi j is Kronecker’s delta, i.e.

δi j =

{
1 (i = k)
0 (otherwise)

.

In the present paper, outputxik is binarized as fol-
lows:

xD
ik =

{
1 (xik > x)
0 (otherwise)

,

wherex refers to average ofxik, i.e.

x =
1

N2

N∑

i=1

N∑

k=1

xik. (10)

Chen and Aihara have shown that global solutions
for 10- and 48-city problems were obtained using
TCNN [5]. However, they focus only on the error rate,
which is a measure of quality of the approximate solu-
tion, but not on computational cost. For example, when
the number of cities becomes twice the number of neu-
rons and computational cost per neuron also increases
twice. As a result, total computational cost becomes
four times. In fact, it is difficult to obtain a good approx-
imate solution using TCNN for TSPs with more than 50
cities.
2.3 Divide-and-conquer Approach to Large-

scale TSPs
To overcome the problems explained in the previ-

ous section, computational cost is reduced using a clus-
tering technique. The basic idea is that an intractable
large-scale TSP is divided into some tractable small-
scale ones and then each small-scale TSP is solved us-
ing TCNN.

The following algorithm was proposed in [6].

1. Divide a large-scale TSP into some small-scale
ones according to their coordinates. TheK-mean
method is used as a clustering technique because it
is simple and requires no heavy computation.

2. Determine a visiting order among the clusters.
Finding the visiting order is regarded as a TSP,
called reference TSP. The coordinates of cities in
the reference TSP are assumed as mean vectors in
each cluster. Then solve the reference TSP.

3. Select two cities in each cluster, which have a
shortest distance between the adjacent clusters and
correspond to the starting and the last cities, re-
spectively. this is realized that we set the external
input for such cities to a higher value than the other
cities. As a result, two neurons corresponding to
such cities tend to fire.

4. Solve each small-scale TSP using TCNN.

5. Connect every two cities selected in step 3 to ob-
tain a total tour of the large-scale TSP.

The algorithm will be illustrated using an example,
which is 101-city problem, eil101.tsp, from TSPLIB1.
The optimal tour is shown in figure3. The coordinates
of cities are normalized in the plane [0,1] × [0,1].

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 3: The optimal tour for 101-city problem
(eil101.tsp)

At first, 101 cities are divided into 9 clusters, which
have 20 to 30 cities as shown in figure4. In this fig-
ure, the same symbol denotes the cities belonging to
the same cluster. Next, a reference TSP composed of
9 mean vectors is solved using TCNN. The tour is illus-
trated by the dashed line in the figure. Then, 9 small-
scale TSPs are solved using TCNN, respectively. Fi-
nally, by connecting the 9 tours we can obtain a total
tour of 101-city problem, which is illustrated by the
solid line in the figure.

This method, however, has the following drawbacks.
When determining connecting cities between adjacent
clusters, only local information on distance between
two cities in adjacent clusters is used. As a result, it
is difficult to obtain the optimal tour.

2.4 An Effective Method Considering Global
Information

As described in the previous section, global infor-
mation is needed to obtain good approximate solutions.
In this section, we propose a new effective method for
large-scale TSPs.

Our algorithm is described as follows.

1. Divide a large-scale TSP into some small-scale
ones according to their coordinates usingK-mean
clustering method.

1http://www.iwr.uni-heidelberg.de/iwr/comopt/
software/TSPLIB95/



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 4:An approximate solution for 101-city problem
using the divide-and-conquer approach

2. Determine a visiting order among the clusters by
solving reference TSP.

3. Solve each small-scale TSP and simultaneously
determine two connecting cities between adjacent
clusters using TCNN.

Step 3 is concretely explained in the following.
There are connections between adjacent clusters as
shown in figure5. If we focus on clusterg, there are
connections between neurons in the first column of clus-
terg and in the last column of the previous clusterg−1.
Let Ng denote the number of cities in clusterg. There
areNg−1 × Ng connections between clusterg andg− 1.
Similarly, there areNg×Ng+1 connections between clus-
terg and the next clusterg + 1.

1 Ng 1Ng-1

cluster
g

previous cluster
g-1

next cluster
g+1

Figure 5: The arrangement of neurons for large-scale
TSPs

Using this formation, the constraint term in energy

function is described as:

E1 =

Ng∑

i=1


Ng∑

k=1

xg
ik − 1


2

+

Ng∑

k=1


Ng∑

i=1

xg
ik − 1


2

, (11)

wherexg
ik refers to the output of neuron (i, k) in cluster

g.
Then, the distance term in energy function consists

of the following two terms, one represents total distance
in the same cluster,E21, and the other is that in adjacent
clusters,E22.

E21 =

Ng∑

i=1

Ng∑

k=1

Ng∑

j=1

dgg
i j xg

ik(xg
jk−1 + xg

jk+1),

(12)

E22 =

Ng∑

i=1


Ng−1∑

j=1

dgg−1
i j xg

i1xg−1
jNg−1

+

Ng+1∑

j=1

dgg+1
i j xg

iNg xg+1
j1

 , (13)

wheredgg
i j refers to the distance between cityi and j in

the same clusterg anddgg−1
i j is the distance between city

i in clusterg and city j in clusterg− 1.
Finally, distance term is defined as:

E2 = CE21 + DE22, (14)

whereC andD are constants.
As comparing energy functionE and Egeneral in

Eq.(7), connection weights and external inputs are de-
rived as:

Wg
ik jl = −A

{
δi j (1− δkl) + δkl(1− δik)

}

−BCdgg
i j (δlk+1 + δlk−1), (15)

Ig
ik = A− 1

2
BD

δk1

Ng−1∑

j=1

dgg−1
i j xg−1

jNg−1

+δkNg+1

Ng+1∑

j=1

dgg+1
i j xg+1

j1

 . (16)

As an example, a solution using this method is shown
in figure6.

3 Computer Simulation
In the previous paper [6], we have shown that by in-

troducing the clustering technique, computational cost
is dramatically reduced and quality of the solution is
also improved compared with three other methods, i.e.
TCNN without a clustering method, greedy method and
genetic algorithm.

In this section, the performance of two methods, our
method proposed in the present paper, method #2, and
method #1 [6] is evaluated.



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 6:An approximate solution for 101-city problem
using the proposed method

In simulations, the value of parameters is set as Table
1. Three TSPs, st70.tsp (figure7), eil101.tsp (figure3),
and ch130.tsp (figure8), from TSPLIB were used for
evaluation.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 7: The optimal tour for 70-city problem
(st70.tsp)

The simulation results are shown in Table2. These
results are averaged over 10 trials. As seen in this table,
method #2 is superior to method #1 on tour length and
error rate. But method #2 takes more steps to converge
than method #1.

4 Summary and Conclusions
In the present paper, we have proposed the effec-

tive TSP solver for large-scale problem using CNN.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 8: The optimal tour for 130-city problem
(ch130.tsp)

Table 1:Parameters used in simulations

parameter value
k 0.9
ε 0.004
I0 0.65
α 0.015
β 0.003

zi(0) 0.08
A 1.5
B 1.0
C 1.0
D 3.0

Table 2:Simulation results

TSP method #1
from TSPLIB L e(%) n

st70.tsp 782 15.9 289
eil101.tsp 701 11.5 393
ch130.tsp 7334 20.0 619

TSP method #2
from TSPLIB L e(%) n

st70.tsp 756 12.0 298
eil101.tsp 699 11.1 407
ch130.tsp 7137 16.8 638

L — tour length
e— error rate (%)
n — the number of steps to converge



Through computer simulations, it is shown that our
method could solve large-scale problems with more
than 50 cities, which cannot be solved by other CNNs.
Using the clustering technique, the computational cost
is dramatically reduced. By considering both global and
local information, the quality of solution is improved.

The computational cost highly depends on the num-
ber of clusters and cities in a cluster. Moreover, the
quality of the solution of reference TSP affects the final
tour length. The development of the optimal clustering
using neural networks is future work. The application
to other combinatorial optimization problems should be
investigated.

References
[1] E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy-Kan,

and D. B. Shmoys, editors.The Traveling Sales-
man Problem — A Guided Tour of Combinatorial
Optimization. John Wiley & Sons, 1997.

[2] J. J. Hopfield and D. W. Tank. Neural computation
of decisions in optimization problems.Biological
Cybernetics, 52:141–152, 1985.

[3] D. H. Ackley, G. E. Hinton, and T. J. Sejnowski. A
learning algorithm for Boltzmann machines.Cog-
nitive Science, 9:147–169, 1985.

[4] H. Nozawa. A neural network model as a globally
coupled and applications based on chaos.Chaos,
2(3):377–386, 1992.

[5] L. Chen and K. Aihara. Chaotic simulated anneal-
ing by a neural network model with transient chaos.
Neural Networks, 8:915–930, 1995.

[6] K. Kobayashi. Introducing a clustering technique
into recurrent neural networks for solving large-
scale traveling salesman problems. InProceed-
ings of the 8th International Conference on Artifi-
cial Neural Networks (ICANN98), volume 2, pages
935–940, 1998.


	1 Introduction
	2 How to Solve Large-scale TSP Using CNN
	2.1 Transiently Chaotic Neural Network
	2.2 Formulation for TSP
	2.3 Divide-and-conquer Approach to Large-scale TSPs
	2.4 An Effective Method Considering Global Information

	3 Computer Simulation
	4 Summary and Conclusions

