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Abstract regarding computational cost, it becomes much heavier.
This paper presents anffective TSP (Traveling Nozawa introduced a negative self-feedback connec-

Salesman Problem) solver for large-scale problems ulon to & discrete-type Hopfield modé][ Since this

ing neural networks. Firstly, in the proposed method’%‘”OWS each neuron to have chaotic states, a network

an intractable large-scale TSP is divided into som&CNVerges to a global minimum not trapping into local

tractable small-scale problems (clusters) using a cluginima. Furthermore, Chen and Aihara improved con-

tering technique. Secondly, a visiting order of cluster4€T@ence property in Nozawa model, where the value of

is determined using chaotic neural networks (CNNs{€ self-feedback connection is gradually decreeskd [
Thirdly, the small-scale problems are solved usin his realizes a chaotic simulated annealing. However,

CNNs. Simultaneously, two pairs of connecting citi th models still have a problem on computational cost

between adjacent clusters are also determined usiffgf |2rge-scale TSPs. Furthermore, it isfigult to ob-
CNNs. Through computer simulations, it is confirmeffin @ good approximate solution for TSPs with more

that the proposed method iiective to solve the large- han few tens of cities. _
scale problems. In the present paper, we propose dteetive al-

) gorithm for solving large-scale TSPs using a cluster-
1 Introduction ing technique. The basic concept of our method is
It is well known that TSP (traveling salesman probthat an intractable large-scale TSP is divided into some
lem) [1] is one of the combinatorial optimization prob-tractable small-scale TSPs. Here, the small-scale TSP
lems and is categorized as NP-hard problem. The T$&fers to one which can be easily solved by RNNs.
is a problem to find a closed tour which visits each citiKobayashi presented a method introducing a clustering
once, returns to the starting city and has a shortest technique for solving large-scale probleri}. [ How-
tal path length. A lot of forts have been devoted toever, this method does not always give us good approxi-
solve TSP because its solutions are widely applicable teate solutions because it does not consider interactions
engineering and other field. between adjacent clusters. In the present paper, we fo-
Hopfield and Tank proposed a recurrent neural netus on such interactions to obtain good approximate so-
work (RNN), so-called Hopfield model, for solvinglutions for large-scale TSPs.
combinatorial optimization problemg][ In their asyn- .
chronous model, it is guaranteed that a network grad- HOW to Solve Large-scale TSP Using
ually changes its state so as to decrease a cost func- CNN
tion defined for the problem. They have applied it to In this section, transiently chaotic neural network
TSP and shown that an approximate solution is obtain€BCNN) proposed by Chen and Aihar8][ which is
to some small-scale TSPs. As the number of cities imne of TSP solvers using CNNs, is described (Section
creases, however, the network tends to be trapped id). Then, formulation for TSP is introduced (Section
local minima because they are dramatically increase?l2). After that, the divide-and-conquer approdéh [
In general, such a problem could be escaped using dor solving large-scale TSPs is presented (Section 2.3).
nealing techniques like Boltzmann machii8. [ But, Finally, a new &ective method for solving large-scale



TSPs is proposed (Section 2.4). 2.2 Formulation for TSP

2.1 Transiently Chaotic Neural Network In TCNN, the formulation for TSP is identical to
The TCNN is a type of RNNs and proposed for solvHopfield model[P]. For N-city TSP, the neurons are

ing combinatorial optimization problems. The overvievarranged as shown in figu In this figure, each row

of TCNN is shown in figurél In this figure, the con- specifies city and each column is visiting order. If neu-

nections denoted by symbelare excitatory and’s are ron (,K) is activated, cityi is visited in thekth order.

inhibitory.

visiting order
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Figure 1:The structure of TCNN

The dynamics of TCNN witiN neurons is charac- Figure 2:The arrangement of neurons for TSP

terized by the following equation$]}
1
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yit+1) = kyi(t)
{ N } where A and B are constants anB; and E, are con-
+a

The energy function is defined as follows:

(1) L
E= E (AE]_ + BEZ) R (4)

Z Wi xj(t) + i straint term and distance term in energy function, re-

=1 j#i spectively.E; andE; are defined as:
2O () o, @) . )
a(t+1) = (1-Had), 3) E, - Z(Z Yoo 1]
where i=1 \k=1

Xi output of neuron (0 < x < 1) N /N 2
Vi internal state of neuroin + Z [ Xik — 1] , (5)
€ slope parameter of sigmoid function k=1 \ict

(e>0) N N N
k  decay parameter of (0 < k < 1) E, = Z Z o Xik (xjk_l + x,-k+1). (6)
o't positive scaling parameter for inputs i=1 k=1 j=1
Wij ;(r)]g?ectmn weight between neurbn By comparing energy functiol of Eqg.[) and the

. . following general energy function
li external input to neuron 99 9y ’

z  self-feedback connection weighg ¢ 0) 1 N NN
lo positive constant Egenerai= — > Z Z Z Z Wi ji Xi Xji
B decay parameteraf (0< B < 1) i=1 k=1 j=1 I=1
The TCNN is characterized as follows. At the initial N N
statez is so large that a network state is chaotic and the - Z Z lik Xik» (1)
network searches a global solution. Thenis gradu- i=1 k=1

ally decreased with time. The network is also graduallyy,nection weighWi; and external inputy are de-
changed from chaotic state to steady state. An optimizgzeq as follows:

tion process of TCNN is regarded as a chaotic simulated
annealing (CSA)S). Wiji = —A{éij (1 - 6k) + k(L - (5ik)}



—Bd;(dik+1 + Oik-1), (8) 5. Connect every two cities selected in step 3 to ob-

k= A Q) tain a total tour of the large-scale TSP.
wheres;; is Kronecker's delta, i.e. The algorithm will be illustrated using an example,
which is 101-city problem, eil101.tsp, from TSPLIB
5 = 1 (=K The optimal tour is shown in figuf@ The coordinates
Y71 0 (otherwisg - of cities are normalized in the plane [ x [0, 1].

In the present paper, outpuy is binarized as fol- 1
lows:

p_J[ 1 (k>X)
K=\ o (otherwisg °

whereX refers to average of, i.e.

1 N N
yzmzzmk. (10)  osf

Chen and Aihara have shown that global solutions
for 10- and 48-city problems were obtained using
TCNN [5]. However, they focus only on the error rate, o2 ¢
which is a measure of quality of the approximate solu-
tion, but not on computational cost. For example, when ®' [
the number of cities becomes twice the number of neu-
rons and computational cost per neuron also increases ° ¢! 02 03 04 05 06 07 08 09 f
twice. As a result, total computational cost becomes
four times. In fact, it is dficult to obtain a good approx-
imate solution using TCNN for TSPs with more than 5
cities.

2.3 g;lllge_l:ggi'conquer Approach to Large- At first, 101 ci_ties are divided. intp 9 cluster_s, v_vhich
have 20 to 30 cities as shown in figlde In this fig-

To overcome the problems e_xplalned n the P'Vlire, the same symbol denotes the cities belonging to
ous section, computational cost is reduced using a cl

tering techni The basic idea is that an intract bﬁ’e same cluster. Next, a reference TSP composed of
ering technique. The basic 1dea IS that an Intractabeg,, o, , yectors is solved using TCNN. The tour isillus-
large-scale TSP is divided into some tractable small-

. ated by the dashed line in the figure. Then, 9 small-
scale ones and then each small-scale TSP is solved Us-\ . +5ps are solved using TCNN, respectively. Fi-
ing TCNN. ’ .

. . . nally, by connecting the 9 tours we can obtain a total
The following algorithm was proposed @[ tour of 101-city problem, which is illustrated by the
I?s_)olid line in the figure.

This method, however, has the following drawbacks.
g\{ en determining connecting cities between adjacent
clusters, only local information on distance between
two cities in adjacent clusters is used. As a result, it
2. Determine a visiting order among the clusterds difficult to obtain the optimal tour.

Finding the visiting order is regarded as a TS®.4 An Effective Method Considering Global

called reference TSP. The coordinates of cities in Information

the reference TSP are assumed as mean Vectors ifng gescribed in the previous section, global infor-

each cluster. Then solve the reference TSP.

igure 3: The optimal tour for 101-city problem
eil101.tsp)

1. Divide a large-scale TSP into some small-sca
ones according to their coordinates. TKemean
method is used as a clustering technique becaus
is simple and requires no heavy computation.

mation is needed to obtain good approximate solutions.
this section, we propose a ne\fextive method for

ﬁEge-scaIe TSPs.

Our algorithm is described as follows.

3. Select two cities in each cluster, which have
shortest distance between the adjacent clusters
correspond to the starting and the last cities, re-
spectively. this is realized that we set the external
input for such cities to a higher value than the other
cities. As a result, two neurons corresponding to
such cities tend to fire.

1. Divide a large-scale TSP into some small-scale
ones according to their coordinates uskgnean
clustering method.

) Ihttpy/www.iwr.uni-heidelberg.déwr/comopt
4. Solve each small-scale TSP using TCNN. softwar¢TSPLIB9Y



function is described as:

NY [ N9 2
C ke
=1

i N 2
| +§[;>¢’k—1} : (11)

wherex: refers to the output of neuroi k) in cluster
] g.

Then, the distance term in energy function consists
of the following two terms, one represents total distance
in the same clusteE;,;, and the other is that in adjacent
clusters Eoo.

N9 N9 N9

- 99,9 (9 g
y Ea = Z Z Z X (Ge-1 + Xjan)-
i=1 k=1 j=1
12)
. . . . . N9 /N9-1
Flgure 4.Aq approximate solution for 101-city problem E Z Z 0010 oL
using the divide-and-conquer approach 22 = TR RIS
i-1 \j=1
Ng+1
1 1
2. Determine a visiting order among the clusters by + Z di® N Xy ] (13)
=1

solving reference TSP.

whered;” refers to the distance between ditgnd j in
3. Solve each small-scale TSP and simultaneou

determine two connecting cities between adjac
clusters using TCNN.

We same clusteganddﬂg‘1 is the distance between city
emn clusterg and city j in clusterg — 1.
Finally, distance term is defined as:

Step 3 is concretely explained in the following. E, = CE,; + DEpy, (14)
There are connections between adjacent clusters as
shown in figurds If we focus on clusteg, there are WhereC andD are constants.
connections between neurons in the first column of clus- AS comparing energy functioe and Egeneral in
terg and in the last column of the previous clusger1. Eq.[ZI), connection weights and external inputs are de-
Let N9 denote the number of cities in clustgr There fived as:

areN%1 x N9 connections between clusigandg — 1. _ g :
Similarly, there aré&N9xN9*! connections between clus- Wien = A{d” (1= 0a) + (1 6"‘)}
terg and the next clustey + 1. ~BC (61 + Gik-1), (15)
1 N
g _ gg-1,9-1
19 = A- EBD[&MZ dI s,
=1
Ng+1
+6ingrt Z dgg*lx?fl] . (16)
=1

As an example, a solution using this method is shown
in figurelg

3 Computer Simulation

! In the previous papel], we have shown that by in-

previous cluster cluster next cluster troducing the clustering technique, computational cost
g-1 g g+1 is dramatically reduced and quality of the solution is

also improved compared with three other methods, i.e.

) TCNN without a clustering method, greedy method and
Figure 5: The arrangement of neurons for Iarge—scal&em_}tiC algorithm.

TSPs

In this section, the performance of two methods, our
method proposed in the present paper, method #2, and
Using this formation, the constraint term in energynethod #1¢] is evaluated.



Figure 6:An approximate solution for 101-city problem
using the proposed method Figure 8: The optimal tour for 130-city problem
(ch130.tsp)

In simulations, the value of parameters is set as Table
[@ Three TSPs, st70.tsp (figur, eil101.tsp (figuré),

and ch130.tsp (figur), from TSPLIB were used for Table 1:Parameters used in simulations
evaluation.
parameter value
k 0.9
€ 0.004
lo 0.65
a 0.015
B 0.003
z(0) 0.08
A 15
B 1.0
C 1.0
D 3.0
Table 2:Simulation results
TSP method #1
from TSPLIB L e(%) n
st70.tsp 782 15.9 289
Figure 7: The optimal tour for 70-city problem eill01.tsp 701 115 393
(st70.tsp) ch130.tsp 7334 20.0 619
TSP method #2
The simulation results are shown in Talle These from TSPLIB L e(%) n
results are averaged over 10 trials. As seenin thistable, st70.tsp 756 12.0 298
method #2 is superior to method #1 on tour length and  eil101.tsp 699 111 407
error rate. But method #2 takes more steps to converge ch130.tsp 7137 16.8 638

than method #1.
_ L — tour length
4 Summary and Conclusions e— error rate (%)
In the present paper, we have proposed tliece Nn— the number of steps to converge
tive TSP solver for large-scale problem using CNN.



Through computer simulations, it is shown that our
method could solve large-scale problems with more
than 50 cities, which cannot be solved by other CNNs.
Using the clustering technique, the computational cost
is dramatically reduced. By considering both global and
local information, the quality of solution is improved.

The computational cost highly depends on the num-
ber of clusters and cities in a cluster. Moreover, the
quality of the solution of reference TSHects the final
tour length. The development of the optimal clustering
using neural networks is future work. The application
to other combinatorial optimization problems should be
investigated.
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