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ABSTRACT: A new method to design wavelet networks using genetic algorithms is proposed. Designing wavelet
networks is regarded as a combinatorial optimization problem to arrange the windows of wavelets and then genetic
algorithms are used to derive their optimal arrangement. The effectiveness of the proposed method is verified through
computer experiments.

1 INTRODUCTION

In designing neural networks, it is important to determine an optimal network size, the number of hidden layers and
units, to realize desired mappings.

Backpropagation method proposed by Rumelhart et al is widely used as a learning rule for multi-layered perceptrons
(MLPs) [Rumelhart, Hinton, and Williams 1985]. It has, however, some problems such as trapping into local minima
and slow convergence. Since there is no established method to determine the network size of MLPs one have to do
it empirically. If the network size is smaller than the optimal size it is difficult to realize desired mappings. On the
other hand, if the network size is larger generalization error increases. Therefore, it is crucial to determine the optimal
network size for realizing desired mappings.

Recently, the methods for designing the networks using wavelet analysis have been proposed. Wavelet networks
have the following merits [Pati and Krishnaprasad 1993; Zhang and Benveniste 1992; Kobayashi and Torioka 1994;
Kobayashi, Torioka and Yoshida 1994].

(1) It is guaranteed that wavelet networks can sufficiently approximate any functions in the Hilbert spaceL2(R).

(2) The internal expressions are readily understandable because of their multi-resolutional structures.

(3) It is not difficult to add or delete the hidden units not affecting the performances because the basis function is
localized in the time-frequency plane and has no bias.

Pati et al proposed a method for network synthesis using discrete affine wavelet transform[Pati and Krishnaprasad
1993]. However, their method does not guarantee an optimal arrangement of windows because it uses only information
of expansion coefficients in network synthesis.

In the present paper, we regard the arrangement of windows as a combinatorial optimization problem [Ueda,
Kobayashi and Torioka 1997]. Then we propose a new method to optimally arrange windows using genetic algorithms.
Through computer experiments, it is verified that our method provide an optimal arrangement.

2 PRELIMINARIES

In this section, the basics of wavelets is briefly introduced[Chui 1992]. Throughout the present paper, it is assumed that
we treat a class of functions in the Hilbert spaceL2(R). The inner product and norm are defined as follows.

< f ,g >
4
=

∫
R

f (x) g(x)dx, (1)

‖ f ‖ 4
= < f , f >1/2, (2)

whereg denotes the complex conjugate ofg.
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2.1 WAVELET TRANSFORM

The integral wavelet transform of functionf ∈ L2(R), T(a,b), is defined as

T(a,b)
4
=< f , ψ(a,b) >, (3)

whereψ is a basis function calledmother waveletor analyzing waveletin wavelets but we named itfitting wavelet (FW)
[Kobayashi and Torioka 1994] and thenψ(a,b) is obtained by translation ofb and dilation bya.

ψ(a,b)(x) =
1
√

a
ψ(

x− b
a

). (4)

The FW must satisfy the following equation.

cψ =
∫

R

|Ψ(ω)|2
|ω| dω < ∞, (5)

whereΨ is the Fourier transform ofψ.

2.2 INVERSION FORMULA

In realizing wavelet networks, parametersa andb should be discretized. In the present paper, we consider the following
discretization. {

a = 2−n

b = 2−nmb0
(6)

whereb0 is a constant calledsampling rateandn, m ∈ Z. The value ofb0 should be determined such thatψ generates
a frame ofL2(R) (See [Chui 1992]).

In this case, the inversion formula is defined as:

f (x)
4
=
∑

n,m∈Z
< f , ψn,m > ψn,m(x), (7)

whereψn,m(x) = 2n/2ψ(2nx−mb0) and{ψn,m} refers to the dual basis of{ψn,m}.
The FW should satisfy the following stability condition becausef must be reconstructed from partial information

of T(a,b).

A‖ f ‖2 ≤
∑

n,m∈Z
| < f , ψn,m > |2 ≤ B‖ f ‖2, (8)

where 0≤ A ≤ B < ∞ (A, B ∈ R).

2.3 TIME-FREQUENCY WINDOW

In wavelets, one of the most important concepts iswindowof a FW. The FW is localized in the time-frequency plane.
That is, the FW canseesuch a time-frequency region and not other region. This property results in the identification of
localization.

For FWψ, centerx and radius∆ψ are defined as:

x
4
=

1
‖ψ‖2

∫
R

x|ψ(x)|2dx,

(9)

∆ψ
4
=

1
‖ψ‖

{∫
R
(x− x)2|ψ(x)|2dx

} 1
2

.

Similarly, for the Fourier transform ofψ, Ψ, centerω and radius∆Ψ are defined as:

ω
4
=

1
‖Ψ+‖2

∫
R+
ω|Ψ(ω)|2dω,

(10)

∆Ψ
4
=

1
‖Ψ+‖

{∫
R+

(ω − ω)2|Ψ(ω)|2dω

} 1
2

,
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whereΨ+ isΨ defined forω ∈ R+ = [0,∞). Since we only consider the positive frequency, the FW must satisfy more
strict condition than eq.(5), i.e.

cψ
2
=

∫
R+

|Ψ(ω)|2
ω

dω < ∞. (11)

Therefore,ψ has a time-frequency window,

Wψ = [x− ∆ψ, x+ ∆ψ] × [ω − ∆Ψ, ω + ∆Ψ]. (12)

In general,ψn,m has a window,

Wn,m = [2−n(x+mb0 − ∆ψ),2−n(x+mb0 + ∆ψ)] × [2n(ω − ∆Ψ),2n(ω + ∆Ψ)]. (13)

Note that the size of the window is constant for any combination ofn andm, i.e.

2−n+1∆ψ × 2n+1∆Ψ = 4∆ψ∆Ψ
= const. (14)

3 WAVELET NETWORK

It is assumed that the targets are restricted in both time and frequency domains. Thus, the inversion formula can be
approximately realized using the networks with finite hidden units.

Consider a three-layered network (1×N× 1) shown in Fig.1. The input and output units are linear elements and the
output function of the hidden units which satisfies both admissibility and stability conditions, i.e. eq.(11) and eq.(8). It
is assumed that the network sufficiently approximates the target. Intuitively, this means that the time-frequency region
is effectively covered by theN windows. The estimate of the network,f̂ , is represented by:

f̂ (x) =
∑
n,m

cn,mψn,m(x)

=
∑
n,m

cn,m2n/2ψ(2nx−mb0), (15)

wherecn,m is a weight parameter between the hidden layer and the output unit.

4 DESIGN ALGORITHM

In this section, an algorithm to design wavelet networks using genetic algorithms is proposed. In eq.(15), The rough
flow of our algorithm is as follows.

1) Given a data setS from a time series.

S = {(xk, fk)|xk ∈ [xmin, xmax], k = 1 ∼ M}. (16)

2) Estimate the frequency bandsω ∈ [ωmin, ωmax] of the data set using Fourier analysis.

3) Pick up all the windows whose centers are involved in the time-frequency concentration (See Fig.2):

Q = [xmin, xmax] × [ωmin, ωmax]. (17)

4) An optimal arrangement of the windows, i.e. optimal combination ofn andm, is searched using genetic algorithm.
The parametercn,m’s are updated using gradient descent method. In our coding scheme, each string is represented
by binary digit, which shows whether the corresponding unit exist, 1, or not, 0. Thus, all the strings consist of N
binary digits. Then we employ three genetic operators, reproduction, crossover and mutation. The fitness function
is defined by the following equation.

f itnessi =
1
Ei
+ K

1
Ni
, (18)

whereEi and Ni denote the approximation error (root mean squared error defined below) and the number of
hidden units for individuali, respectively andK is a trade-off parameter between two terms.

Ei =

√√√
1
M

M∑
k=1

{
f̂ (xk) − fk

}2
. (19)

Proceedings of EUFIT’97 (Vol.1) 431 presented by Kunikazu Kobayashi



Designing Wavelet Networks Using Genetic Algorithms

5 EXPERIMENTS

Some computer experiments were carried out to evaluate performances of our method. The following basis function
was used for a FW (See Fig.3).

ψ(x) = xexp(−x2/2). (20)

The centers and radii in both time and frequency domains are calculated using eqs.(9) and (10) x = 0

∆ψ =

√
3
2

 ω = 2√
π

∆Ψ =

√
3
2 −

4
π

Then we prepared the following function as a target.

f (x) = xsin(x) cos(5x) sin(10x) cos(30x) sin(50x). (21)

The target function is sampled inx ∈ [0,1] at sampling rateωs = 128π. Consequently, we have 64 samples.
The frequency bands of the samples are estimated using FFT (fast Fourier transform):

ω ∈ [2π,12π] ∩ [20π,32π]. (22)

There are 248 FWs whose centers are involved in the above bands.
The followings are parameter settings:

b0 = 1.0

population size = 20

K = 10

crossover probability = 0.8 (one-point crossover)

mutation probability = 0 ∼ 0.3 (adaptive mutation)

After 50 generations, we had 139 FWs. Namely, the number of FWs could be reduced using genetic algorithms.
Figure4 shows the result by our method. The solid line shows the approximation and the broken line is the target.

Table1 shows the evaluation values of approximation error (RMSE1) and generalization error (RMSE2). In this table,
WN1 refers to our method, WN2 is a result without optimization [Pati and Krishnaprasad 1993] and MLP is a result of
MLP with 139 hidden units.

Table 1:Results

N RMSE1 RMSE2
WN1 139 3.48×10−3 7.22×10−2
WN2 248 4.60×10−4 1.05×10−2
MLP 139 2.49×10−2 2.38×10−2

6 CONCLUSION

The present paper has proposed the method for designing wavelet networks. Genetic algorithms are used for searching
an optimal arrangement of the hidden units. Through computer experiments, it is shown that our method could reduce
the number of hidden units.
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Figure 1:A wavelet network
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Figure 3: A fitting wavelet used in our experi-
ments
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Figure 4:Approximation by our method
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