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ABSTRACT:
A new mapping network combined wavelet and neural networks

is proposed. The algorithm consists of two process: the self-
construction of networks and the minimization of errors. In the first
process, the network structure is determined by using wavelet anal-
ysis. In the second process, the approximation errors are minimized.
The merits of the proposed network are as follows: network opti-
mization, partial retrieval of the approximated function, fast conver-
gence and escaping local minima. The computer simulations con-
firmed these merits

INTRODUCTION

Recently, it has been shown that neural
networks (NNs) can realize any mappings
(e.g., Hecht-Nielsen, 1987). These are
important to theoretically explore the po-
tential of NNs not practically.

Backpropagation (BP) networks are
now the most popular mapping network
(Rumelhart, Hinton and Williams, 1985).
It is, however, well known that BP net-
works have few problems such as trapping
into local minima and slow convergence.
In addition, the network structures are de-
termined by trial and error.

Recently, many researchers proposed
various network optimization schemes in
order to solve such problems. There
are two approaches: recruiting (adding)
method (e.g., Azimi-Sadjadi, Sheedvash
and Trujillo, 1993) and pruning (deleting)
method (e.g., Hagiwara, 1991).

It is expected that wavelets will be
a new powerful tool for signal analy-
sis (Chui, 1992). Wavelets can approxi-
mately realize the time-frequency analy-

sis using a mother wavelet. The mother
wavelet has a square window in the time-
frequency space. The size of the win-
dow can be almost freely variable by two
parameters. Thus, wavelets can identify
the localization of unknown signals at any
level.

In this paper, wavelets and NNs are
combined and aself-recruiting wavelet
neural network(SERWANN) is proposed.
The combination of wavelets and NNs
have been studied but the number of hid-
den units was determined before learning
(Zhang and Benveniste, 1992; Pati and
Krishnaprasad, 1993).

SERWANN has four merits: self-
construction of networks, partial retrieval
of approximated function, fast conver-
gence and escaping local minima. In-
corporating the idea of wavelets, the out-
put function is localized in both the time
and frequency domains. Therefore, each
hidden unit has a square window in the
time-frequency plane. Thus, SERWANN
can capture function approximating prob-
lems as two tasks: optimizing the net-
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work structure and minimizing errors. In
this connection, the proposed algorithm
comprises two processes: construction of
networks and minimization of errors. In
the first process, the network gradually re-
cruits hidden units to effectively and suf-
ficiently cover the time-frequency region
occupied by a given target. Simultane-
ously, the network parameters are updated
to preserve the network topology and take
advantage of the later process. In the sec-
ond process, the parameters of the ini-
tialized network is updated usingδ rule
(Rumelhart, Hinton and Williams, 1985)
in order to minimize the errors of approx-
imation. This rule is only applied to the
hidden units where the selected point falls
into their windows. Therefore, the learn-
ing cost can be reduced. In addition, the
localization of the output function results
in the partial retrieval of approximated
function.

WAVELETS

In this paper, we will use the underlying
Hilbert spaceL2(R), whose inner product
and norm are defined as follows.

< f ,g >
4
=

∫

R
f (x) g(x)dx

‖ f ‖4=< f , f >1/2

whereψ denotes the dual ofψ.

Wavelet transform
The integral wavelet transform of function
f ∈ L2(R), T(a,b), is defined as:

T(a,b)
4
=< f , ψ(a,b) > (1)

whereψ(a,b)(x) = 1√
a
ψ( x−b

a ).
This means the correlation between

function f and ψ(a,b), which is obtained
from a basic function by dilation bya and
translation ofb.

In wavelet analysis, the basic functionψ
is called mother wavelet but we call itfit-
ting wavelet(FW) because the objective
is function approximation. This FW must

satisfy the following admissibility condi-
tion.

cψ =

∫

R

|Ψ(λ)|2
λ

dλ < ∞ (2)

whereΨ is Fourier transform ofψ.

Inversion formula
The NNs must reconstruct the target func-
tion from partial information ofT(a,b).
In this paper, the dyadic partitiona = 2j,
b = kb02j ( j, k ∈ Z) is used (b0 is a sam-
pling rate). This inversion formula is de-
fined as:

f (x)
4
=

∑

j,k∈Z
< f , ψ j,k > ψ j,k(x) (3)

whereψ j,k(x) = 2− j/2ψ(2− j x − kb0) and
{ψ j,k}means the dual basis of{ψ j,k}.

The FW should satisfy the following
stability condition becausef must be re-
constructed from partial information of
T(a,b).

A‖ f ‖2 ≤
∑

j,k∈Z
| < f , ψ j,k > |2 ≤ B‖ f ‖2 (4)

where 0≤ A ≤ B < ∞ (A, B ∈ R).

Window of a wavelet
In wavelets, one of the most important
concepts is window of a wavelet. This
refers to a rectangular region in the time-
frequency plane defined for a FW. That is,
the FW canseesuch region and not other
region. This property results in the identi-
fication of localization.

For FWψ, the support in the time do-
main, suppε(ψ), is defined as:

suppε(ψ)
4
= [xFW

min, x
FW
max] (5)

wherexFW
min andxFW

max satisfies the following
inequality.

1− ε <
∫ xFW

max

xFW
min
|ψ(x)|2 dx

∫
R
|ψ(x)|2 dx

(6)

It is implied that the energy ofψ in
[xFW

min, x
FW
max] is at least concentrated in the

time domain at rate 1− ε. Similarly, for
Fourier transform of FW,Ψ(λ), the sup-
port in the frequency domain is defined as:

suppε(Ψ)
4
= [λFW

min, λ
FW
max] (7)
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where

1− ε <
∫ λFW

max

λFW
min
|Ψ(λ)|2 dλ

∫
R
|Ψ(λ)|2 dλ

(8)

Therefore,ψ has a time-frequency win-
dow, [xFW

min, x
FW
max] × [λFW

min, λ
FW
max].

In general,ψ(a,b)(x) has a window, [b +

axFW
min,b + axFW

max] × [λFW
min/a, λ

FW
max/a]. The

size of the window is constant for any
translation or dilation.

NETWORK EXPRESSION

The inversion formula cannot be ex-
pressed by finite NNs. Actually, however,
most targets are restricted in both the time
and frequency domains. Thus, the inver-
sion formula can be approximately real-
ized using NNs with finite hidden units.

Consider a three-layered network (1×
N × 1), whose input and output units are
linear elements and the output function
of the hidden units satisfies both admis-
sibility and stability conditions, i.e. eq.(2)
and eq.(4). It is assumed that the network
sufficiently approximates the target. Intu-
itively, this means that the time-frequency
region is effectively covered by theirN
windows. The estimate of the network,f̂ ,
is represented by:

f̂ (x) =

N∑

i=1

ci ψ(ai x− bi) (9)

APPROXIMATION AND OPTIMIZA-
TION

Function approximating problem
Given sparse examples, NNs will inter-
nally construct a desired mapping through
learning. SERWANN captures function
approximating problems as two tasks:

• Effectively and sufficiently cover the
time-frequency region of a given tar-
get by the windows of FWs.

• Approximate training data as pre-
cisely as possible and interpolate test
data as plausible as possible.

The former implies optimizing the net-
work structure and the later is realizing
the best approximation and interpolation.

Construction of networks

The number of hidden units is deter-
mined and simultaneously the parameters
of each hidden unit are updated by Koho-
nen’s rule (Kohonen, 1989).

Consider that a targetf is localized in
[xmin, xmax] and is sampled at sampling
rateλs. The sampled set,T, is:

T = {(xα, fα) | xα ∈X, fα ∈ F,

α=1 ∼ M} (10)

where

X={x1 = xmin, · · · , xα, · · · , xM = xmax}
F={ f (x1), · · · , f (xα), · · · , f (xM)}
M=λs(xmax− xmin)

1. Estimate the band width of setT by
DFT.

suppε(T) = [λmin, λmax]

The DFT requires discrete frequency.
Thus, taking the inequalitya > 0 into
consideration,

λmin, λmax∈Λ
={λ1, · · · , λα, · · · , λM/2}

whereλM/2 ≤ λs/2.

2. Using the following equations, trans-
form x ∈ X andλ ∈ Λ to dilation and
translation, respectively.

a=
λFW

min + λFW
max

2λ

b=x− (xFW
min + xFW

max)(λ
FW
min + λFW

max)

4λ

where the above equations can be eas-
ily derived using the fact that the cen-
ter of the window exists in the time-
frequency region occupied by the tar-
get.

3. Calculate wavelet spectrum of the tar-
get for such dilation and translation
parameters.
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4. Create training setSCL.

SCL = {(xα, λα) | xα∈X, λα ∈ Λ,

α=1 ∼ M} (11)

whereλα refers to the frequency at the
maximum value of wavelet spectrums
with respect toxα.

5. Determine the number of initial hid-
den units,N0, and initialize their pa-
rameters,ai, bi andci (i = 1 ∼ N0).

6. Pick up a training point (xα, λα) from
SCL at probability pα = |T′(aα,bα)|,
whereT′ refers to normalizedT.

7. Determine the nearest neighborc of
the selected point.

c = arg min
i
‖(xα, λα) − (bi ,ai)‖

8. Determine its neighbor setNc.

Nc = {i | |i − c| ≤ l}

wherel is a positive integer.

9. Update the parameters of uniti if and
only if it belongs toNc and its window
contains the selected point.

at+1
i =at

i + αCL(λα − at
i )

(12)

bt+1
i =bt

i + αCL(xα − bt
i )

for i ∈ Nc and (xα, λα) ∈Wi

whereαCL is a learning constant and
Wi is the window of uniti.
Otherwise, a new unit is created at
rate ρ and its parameters are initial-
ized as follows:

a0
Nt+1=λα + δ

b0
Nt+1=xα + δ

c0
Nt+1=T(a0

Nt+1,b
0
Nt+1) + δ

whereNt+1 = Nt + 1 andδ denotes
small fluctuations. The fluctuations
will reduce the effects ofghost, which
is involved inT(a,b).

10. Repeat step 6 to 9 until the win-
dows of FWs fully cover the time-
frequency region of the target and the
network settles down to a stable state.

Minimization of errors
The network parameters are updated us-
ing δ rule. if and only if the selected point
falls into the windows of hidden units. We
call it a localized backpropagation (LBP)
algorithm.

1. Create training setSLBP.

SLBP={(xα, λα; fα) | xα ∈ X,

λα∈Λ, fα ∈ F, α = 1 ∼ M} (13)

2. Select a training point fromSLBP at
random.

3. Calculate the estimate of the network
by eq.(9).

4. Calculate the squared error.

Eα =
1
2
| f (xα) − f̂ (xα)|2 (14)

5. Update the parameters if and only if
the selected point falls into the win-
dows of their units.

at+1
i =at

i − αLBPδα
ct

i (xα − bt
i )

(at
i )

2
ψ′

bt+1
i =bt

i − αLBPδα
ct

i

at
i

ψ′ (15)

ct+1
i =ct

i + αLBPδαψ

for (xα, λα) ∈Wi

whereδα = f (xα) − f̂ (xα) andαLBP

represents a learning coefficient.

6. Repeat step 2 to 5 until the errors are
minimized.

EXPERIMENTS

The mapping networks are evaluated by
two factors: the capabilities of approx-
imation and interpolation. The former
is how precise the network approximates
training data. The later is how plausible
the network interpolates test data.

We usedψ(x) = x
x0

exp
(

x2

2x2
0

)
as a FW,

which satisfies both the admissibility and
stability conditions. Thex0 was set to
0.07. We prepared the functionf (x) =

sin(3x) cos(5(x − 0.5)) defined in [−1,1]

Proceedings of ANNIE’94 (Vol.4) 508 presented by Kunikazu Kobayashi



A Wavelet Neural Network for Function Approximation and Network Optimization

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

Figure1:Result by SERWANN.

and sampled it at sampling rate 8[Hz] for
training.

The supports of FW and the target are:

supp0.05(ψ)=[−0.1,0.1]

supp0.05(Ψ)=[1.0,7.0]

supp0.05( f )=[−1.0,1.0]

supp0.05(F)=[0.5,2.0]

The ranges of dilation and translation are
a ∈ [2.0,8.0] andb ∈ [−1.0,1.0], respec-
tively.

We experimented under the following
conditions. The learning steps in the con-
struction of networks and the minimiza-
tion of errors were 5000 and 50000, re-
spectively. The number of initial hidden
units was zero, i.e.N0 = 0. In this paper,
the neighbors were not considered, i.e.
l = 0. Furthermore, the learning constant
and learning coefficient were both set to
0.03, i.e.αCL = αLBP = 0.03. The fluctu-
ations in recruiting hidden units were de-
termined from the interval [−0.1,0.1] at
random.

SERWANN converged to 5 to 9 hidden
units, 6.6 on average in 100 trials. The
best result by SERWANN with 7 hidden
units is illustrated in Fig.1. In this figure,
the solid line denotes the target and the
broken one is the approximated function.

For the comparison, the result by a BP
network with 7 hidden units is shown
in Fig.2. This is the best approxima-
tion in 100 trials. The values of learn-
ing and inertial coefficients were 0.05 and
0.5, respectively and the gradient of sig-
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Figure2:Result by the BP network.
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Figure3:Learning curve.

moid function was 0.2. The initial val-
ues of weights and thresholds were de-
termined from the interval [−1.0,1.0] at
random. Furthermore, on-line algorithm
were adapted as the updating method be-
cause we focus on the convergence speed.

The learning curves of both networks
are illustrated in Fig.3. Table 1 shows
the figure of merit of each network. In
this table, RMSE-A and RMSE-I repre-
sent RMSE for training data and test data,
respectively.

SERWANN has better result than the
BP network. In Fig.3, SERWANN shows
fast convergence. On the total learn-
ing time, the computational cost of SER-
WANN was 70 percent of that of the
BP network. This implies the fast con-

Table1:RESULTS.

Network RMSE-A RMSE-I
SERWANN 1.70×10−4 2.02×10−4

BP net 2.45×10−3 2.26×10−3
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Figure4:Partial retrieval by SERWANN in [0,1].

vergence of the LBP algorithm. The
learning steps for a convergence criterion
RMSE-A < 10−2 in SERWANN and the
BP network were about 2000 and 27000
steps, respectively. The rate of conver-
gence was 95 and 67 percent in SER-
WANN and the BP network, respectively.

The partial retrieval by SERWANN is
shown in Fig.4, where the approximated
function is reconstructed in the interval
[0,1]. This required 5 out of 7 hidden
units. This is effective when the size of
target is large.

CONCLUSIONS

This paper have proposed SERWANN,
which was incorporated wavelets and
NNs. SERWANN handled function ap-
proximating problems as two tasks: op-
timizing the network structure and mini-
mizing errors.

The algorithms consisted of two pro-
cesses. First, hidden units were gradually
recruited to cover the time-frequency re-
gion of the target by the windows of FWs.
Next, the network parameters were up-
dated by the LBP algorithm to minimize
the errors.

The capabilities of SERWANN by com-
puter simulations through the comparison
with the BP network. In addition, it was
shown that SERWANN realize fast con-
vergence and high convergence rate. Fur-
thermore, it was shown that SERWANN
can partially retrieve the approximated

function using some hidden units.
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