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ABSTRACT:

A new mapping network combined wavelet and neural networks
is proposed. The algorithm consists of two process: the self-
construction of networks and the minimization of errors. In the first
process, the network structure is determined by using wavelet anal-
ysis. In the second process, the approximation errors are minimized.
The merits of the proposed network are as follows: network opti-
mization, partial retrieval of the approximated function, fast conver-
gence and escaping local minima. The computer simulations con-
firmed these merits

INTRODUCTION sis using a mother wavelet. The mother

wavelet has a square window in the time-
Recently, it has been shown that neurtequency space. The size of the win-
networks (NNs) can realize any mappinggow can be almost freely variable by two
(e.g., Hecht-Nielsen, 1987). These afgarameters. Thus, wavelets can identify
important to theoretically explore the pothe localization of unknown signals at any
tential of NNs not practically. level.

Backpropagation (BP) networks are In this paper, wavelets and NNs are

now the most popular mapping networkombined and aself-recruiting wavelet
(Rumelhart, Hinton and Williams, 1985)neural networK SERWANN) is proposed.
It is, however, well known that BP netThe combination of wavelets and NNs
works have few problems such as trappingave been studied but the number of hid-
into local minima and slow convergenceien units was determined before learning
In addition, the network structures are d¢zhang and Benveniste, 1992; Pati and
termined by trial and error. Krishnaprasad, 1993).

Recently, many researchers proposedcSERWANN has four merits: self-
various network optimization schemes ibonstruction of networks, partial retrieval
order to solve such problems. Theref approximated function, fast conver-
are two approaches: recruiting (addingence and escaping local minima. In-
method (e.g., Azimi-Sadjadi, Sheedvastorporating the idea of wavelets, the out-
and Trujillo, 1993) and pruning (deletingput function is localized in both the time
method (e.g., Hagiwara, 1991). and frequency domains. Therefore, each

It is expected that wavelets will behidden unit has a square window in the
a new powerful tool for signal analytime-frequency plane. Thus, SERWANN
sis (Chui, 1992). Wavelets can approxean capture function approximating prob-
mately realize the time-frequency analfems as two tasks: optimizing the net-
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work structure and minimizing errors. Irsatisfy the following admissibility condi-
this connection, the proposed algorithitton.
comprises two processes: construction of o - f [P(2) 4l <
= T [ee]
R

networks and minimization of errors. In @)

the first process, the network gradually ez rew is Fourier transform ofr.
cruits hidden units toféectively and suf-
ficiently cover the time-frequency regiorfnversion formula

occupied by a given target. Slmultanerge NNs must reconstruct the target func-
ously, the network parameters are updatgd from partial information ofT (a, b).

to preserve the network topology and takg this paper, the dyadic partiticm= 2J,
advantage of the later process. In the sag— k2! (j,k € Z) is used b is a sam-
ond process, the parameters of the inding rate). This inversion formula is de-
tialized network is updated using rule fined as:

(Rumelhart, Hinton and Williams, 1985) f(x) 2 Z < fgik> v 3)
in order to minimize the errors of approx- = ’

imation. This rule is only applied to the =y »

hidden units where the selected point fal\@r}fre‘/’iak(x) = 2702y(277x — kby) and
into their windows. Therefore, the learnt?.. ) Means the dual basis O J.

: . The FW should satisfy the following
ing cost can be reduced. In addition, thgapility condition becausé must be re-

localization of the output function resultgonstructed from partial information of
in the partial retrieval of approximatedr(a, b).

function.
AIFIP< D 1< fue>P<BIFIP (4)
j.kez
WAVELETS where 0K A<B< o (A, BeR).

In this paper, we will use the underlyin

Hilbert space %(R), whose inner productQN'ndOW of a wavelet

and norm are defined as follows. In wavelets, one of the most important
concepts is window of a wavelet. This
< f,g >éf f(x) g(x)dx refers to a rectangular region in the time-

R

frequency plane defined for a FW. That s,
the FW carseesuch region and not other
region. This property results in the identi-

fication of localization.
For FW y, the support in the time do-

IflIE< f, f >12

wherey denotes the dual of.

Wavelet transform main, supp(y), is defined as:
The integral wavelet transform of function SupR(Y) 2 [xFW, xFW )

f € L%R), T(a,b), is defined as: o _
wherex™!V andxf ), satisfies the following

T(ab) 2< f,y@d > (1) inequality.
b _ 1 —b ﬁag"vxlwx|2dx
whoros 0 = D). o pore
This means the correlation between J w92 dx

function f and (ﬁ(a’b), which is obtained It is implied that the energy ofy in
from a basic function by dilation by and [X*W, xEW] is at least concentrated in the

translation ob. _ _ time domain at rate t e. Similarly, for
In wavelet analysis, the basic functign Fourier transform of FW¥(1), the sup-

is called mother wavelet but we callfit- port in the frequency domain is defined as:
ting wavelet(FW) because the objective

is function approximation. This FW must supp(¥) = [ATW aFW (7)

min?
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where The former implies optimizing the net-
work structure and the later is realizing

A 2 ) . : .
e O da the best approximation and interpolation.

LKW ®)

Therefore,y has a time-frequency win-Construction of networks
dow, [ F\i’x, XE‘Q’X] x[ﬂm,ﬂm_ The number of hidden units is deter-

In generaly@P(x) has a window, i) + mined and simultaneously the parameters
axW. b+ axW] x [1"W/a, AFW/a). The of each hidden unit are updated by Koho-

in® min max

size of the window is constant for anyen’s rule (Kohonen, 1989).

trans'ation or d||at|0n COI‘ISider that a targét |S |ocal|26d in
[Xmin» Xmax] @nd is sampled at sampling
rateds. The sampled seT,, is:

NETWORK EXPRESSION

. . T ={(Xa» fo) | X €X, Ty € F,
The inversion formula cannot be ex-

- a=1~ M} (10)
pressed by finite NNs. Actually, however,
most targets are restricted in both the tinvehere
and frequency domains. Thus, the inver-
sion formula can be approximately real- X=Xt = Xmin, -+ X+ X = Xmax}
ized using NNs with finite hidden units. P T, o, TOm))

Consider a three-layered network x1 M=2As(Xmax = Xmin)
N x 1), whose input and output units are , ,
linear elements and the output functionl. Estimate the band width of sét by
of the hidden units satisfies both admis-
sibility and stability conditions, i.e. e@)
and eg[). It is assumed that the network SUPR(T) = [Amin, Amax]
suficiently approximates the target. Intu- . .
itively, this means that the time-frequency 1he DFT requires discrete frequency.
region is éfectively covered by theilN Thus, taking the inequality > 0 into

windows. The estimate of the network, consideration,

is represented by: A, Ama€A

A N ={/11,"‘,/1m"',/lM/2}
0= au@x-b) 9)
i=1 wheredy, < 1s/2.

2. Using the following equations, trans-
form x € X andA € A to dilation and

APPROXIMATION AND OPTIMIZA- translation, respectively.

TION
. I Afin + Arnax
Function approximating problem =
Given sparse examples, NNs will inter- (W XY (APW 4 AR
nally construct a desired mapping through b=x— a1

learning. SERWANN captures function

approximating problems as two tasks: where the above equations can be eas-

ily derived using the fact that the cen-

e Effectively and sfficiently cover the ter of the window exists in the time-
time-frequency region of a given tar-  frequency region occupied by the tar-
get by the windows of FWs. get.

e Approximate training data as pre-3. Calculate wavelet spectrum of the tar-
cisely as possible and interpolate test get for such dilation and translation
data as plausible as possible. parameters.
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4. Create training se®c, . Minimization of errors

10.

. Determine its neighbor sé\..

. Update the parameters of unif and

Sel = (X Au) | X €X, A, € A, The netwc_)rk parameters are updateo! us-
w=1~ M) a1 Ing (5.rule. if aqd only if thg selecte(_j point
falls into the windows of hidden units. We
whereq, refers to the frequency at theall it a localized backpropagation (LBP)
maximum value of wavelet spectrumalgorithm.

with respect tox,. .
P e 1. Create training se$, gp.

. Determine the number of initial hid-

den units,N°, and initialize their pa- Ster={(Xe, dai fa) | X0 € X,
rametersa;, by andc; (i = 1 ~ NO). LA foeFa=1~M  (13)

. Pick up a training pointx,, 4,) from 2. Select a training point frons gp at

Sc. at probability p, = [T’ (aq, ba)l, random.

whereT’ refers to normalized . )
3. Calculate the estimate of the network

. Determine the nearest neighboof by eq.0).

the selected point.
_ 4. Calculate the squared error.
¢ = arg minll(x,, 4.) - (b, &)

£, = 51100 - )P (1)

Ne = {ilfi—c <1} 5. Update the parameters if and only if
the selected point falls into the win-
wherel is a positive integer. dows of their units.

c% —b)
Ly

t+1 t
a""=a; — aLspla

only if it belongs toN. and its window (@h)?
contains the selected point. o
bi*t=b! — a1gp S0V’ (15)
t+1_ .t t ! ! !
& =a + act(d, — &) 4
(12) G*'=Cl + aLpp daty
b;[+1=bit + (ZCL(X(, - blt) for (Xm /la) eW

fort e Neand & 4.) € W wheres, = f(x.) - f(x,) andaiep

whereac, is a learning constant and  represents a learning ddieient.

Wi is the window of unit. 6. Repeat step 2 to 5 until the errors are
Otherwise, a new unit is created at minimized.

rate p and its parameters are initial-

ized as follows:
EXPERIMENTS

aoNul:/lw +0

B0, =X, + 6 The mapping networks are evaluated by
two factors: the capabilities of approx-
imation and interpolation. The former
whereN"! = N' + 1 and¢ denotes is how precise the network approximates
small fluctuations. The fluctuationgraining data. The later is how plausible

will reduce the fects ofghost which the network interpolates test data.
is involved inT (a, b). We usedy(x) = %exp(zx—ng) as a FW,

Repeat step 6 to 9 until the winwhich satisfies both the admissibility and
dows of FWs fully cover the time-stability conditions. Thex, was set to
frequency region of the target and th@.07. We prepared the functiof(x) =
network settles down to a stable statein(3x) cos(5k — 0.5)) defined in £1,1]

CONt+1 =T(a%t+1’ b&ul) + 6
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Figurel:Result by SERWANN. Figure2:Result by the BP network.
0 : ‘ ‘
and sampled it at sampling rate 8[Hz] for RMSE A SERY
training. 51 b e RMSE (SERY
The supports of FW and the target are: £
£ 2
supRos(¥)=[-0.1,0.1] §
supR os(¥)=[1.0, 7.0] Z 3
supp,s(f)=[-1.0,1.0] <
supR,os(F)=[0.5,2.0] -

The ranges of dilation and translation are  °o 10000 20000 30000
a € [2.0,8.0] andb € [-1.0, 1.0], respec- ITERATION

tively. _ _ Figure3:Learning curve.
We experimented under the following

conditions. The learning steps in the comnoid function was 0.2. The initial val-
struction of networks and the minimizayes of weights and thresholds were de-
tion of errors were 5000 and 50000, rgermined from the interval-{1.0,1.0] at
spectively. The number of initial hiddenandom. Furthermore, on-line algorithm
units was zero, i.eN° = 0. In this paper, were adapted as the updating method be-
the neighbors were not considered, i.eause we focus on the convergence speed.
| = 0. Furthermore, the learning constant e learning curves of both networks
and learning cocient were both set t0gre jllustrated in Fi@ Table[ shows
0.03, i..ac = aigp = 0.03. The fluCtu- the figure of merit of each network. In
ations in recruiting hidden units were depig table, RMSE-A and RMSE-| repre-
termined from the interval{0.1,0.1] at  gent RMSE for training data and test data,
random. ~ respectively.

SERWANN converged to 5 to 9 hidden gep\waNN has better result than the

units, 6.6 on average in 100 trials. Th8p network. In Fig3, SERWANN shows
best result by SERWANN with 7 hiddenagt convergence. On the total learn-

units is illustrated in Fidl In this figure, ing time, the computational cost of SER-
the solid line denotes the target and tRganNN was 70 percent of that of the

broken one is the approximated functiongp network. This implies the fast con-
For the comparison, the result by a BP

network with 7 hidden units is shown Table1:RESULTS.

in Figld This is the best approxima- —Network | RMSE-A RMSE-I
tion in 100 trials. The values of learn- "SERWANN | 1.70x10% | 2.02x10%
ing and inertial cofficients were 0.05and  BP net 2.45x1073 | 2.26x1073
0.5, respectively and the gradient of sig-
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1 ‘ ‘ function using some hidden units.
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CONCLUSIONS

This paper have proposed SERWANN,
which was incorporated wavelets and
NNs. SERWANN handled function ap-
proximating problems as two tasks: op-
timizing the network structure and mini-
mizing errors.

The algorithms consisted of two pro-
cesses. First, hidden units were gradually
recruited to cover the time-frequency re-
gion of the target by the windows of FWs.
Next, the network parameters were up-
dated by the LBP algorithm to minimize
the errors.

The capabilities of SERWANN by com-
puter simulations through the comparison
with the BP network. In addition, it was
shown that SERWANN realize fast con-
vergence and high convergence rate. Fur-
thermore, it was shown that SERWANN
can partially retrieve the approximated
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